Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Holomorphic perturbation of Fourier coefficients


Author: Thomas Vils Pedersen
Journal: Proc. Amer. Math. Soc. 129 (2001), 1365-1366
MSC (2000): Primary 42A16; Secondary 46J20
DOI: https://doi.org/10.1090/S0002-9939-00-05785-3
Published electronically: October 11, 2000
MathSciNet review: 1814161
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mathbb{T}$ be the unit circle, let $\mathcal{B}$ be a Banach space continuously embedded in $L^1(\mathbb{T})$ and suppose that $\mathcal{B}$ is a Banach $L^1(\mathbb{T})$-module under convolution. We show that if $f(z)=\sum_{n=-\infty}^{\infty} a_nz^n\in\mathcal{B}$ and $F$ is holomorphic in a neighbourhood $U$ of $0$ with $F(0)=0$ and $a_n\in U (n\in\mathbb{Z}),$ then $\sum_{n=-\infty}^{\infty} F(a_n)z^n\in\mathcal{B}.$


References [Enhancements On Off] (What's this?)

  • 1. J.T. Burnham, Closed ideals in subalgebras of Banach algebras, Proc. Amer. Math. Soc. 32 (1972), 551-555. MR 45:4146
  • 2. H. Reiter, Classical harmonic analysis and locally compact groups, Oxford University Press, London, 1968. MR 46:5933
  • 3. H. Render, The maximal ideal space of $H^{\infty}({\mathbb D})$ with respect to the Hadamard product, Proc. Amer. Math. Soc. 127 (1999), 1409-1411. MR 99h:46101
  • 4. W. Rudin, Functional analysis, McGraw-Hill Book Company, New York, 1973. MR 51:1315

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42A16, 46J20

Retrieve articles in all journals with MSC (2000): 42A16, 46J20


Additional Information

Thomas Vils Pedersen
Affiliation: Laboratoire de Mathématiques Pures, Université Bordeaux 1, 351, cours de la Libération, F-33405 Talence cédex, France
Email: vils@math.u-bordeaux.fr

DOI: https://doi.org/10.1090/S0002-9939-00-05785-3
Received by editor(s): July 20, 1999
Published electronically: October 11, 2000
Additional Notes: This work was carried out at Université Bordeaux 1 while the author was holding a TMR Marie Curie postdoctoral grant from the European Commission.
Communicated by: Dale Alspach
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society