Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Creation and propagation of logarithmic singularities by interaction of two piecewise smooth progressing waves


Author: G. Laschon
Journal: Proc. Amer. Math. Soc. 129 (2001), 1375-1384
MSC (2000): Primary 35L60, 58J47
Published electronically: October 20, 2000
MathSciNet review: 1814163
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

Our aim is to understand the non-conservation of the piecewise smooth regularity by a semi-linear interaction of two transverse progressing waves. Indeed, we know that this phenomenon occurs when the number of characteristic hypersurfaces passing through the locus of interaction, that is, a two-codimensional variety, is strictly inferior to the size of the considered first order strictly hyperbolic system. Thanks to the study of a significant example, we explain the obstruction to the piecewise smooth propagation by a loss of transmission property for the symbols describing the conormal singularities, which originates logarithmic singularities.


References [Enhancements On Off] (What's this?)

  • 1. Jean-Michel Bony, Propagation et interaction des singularités pour les solutions des équations aux dérivées partielles non-linéaires, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 1133–1147 (French). MR 804765
  • 2. H. Bougrini, A. Piriou, and J. P. Varenne, Propagation et interaction des symboles principaux pour les ondes conormales semi-linéaires, Comm. Partial Differential Equations 23 (1998), no. 1-2, 333–370 (French). MR 1608536, 10.1080/03605309808821348
  • 3. L. Hörmander.
    The analysis of partial differential operators.
    Springer-Verlag, New York, 1985.
  • 4. Gilles Laschon, Étude symbolique de la perte de régularité 𝐶^{∞} par morceaux dans l’interaction d’ondes semi-linéaires, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 10, 865–870 (French, with English and French summaries). MR 1689845, 10.1016/S0764-4442(99)80287-0
  • 5. Guy Métivier, Propagation, interaction and reflection of discontinuous progressing waves for semilinear hyperbolic systems, Amer. J. Math. 111 (1989), no. 2, 239–287. MR 987758, 10.2307/2374510
  • 6. Guy Métivier and Jeffrey Rauch, The interaction of two progressing waves, Nonlinear hyperbolic problems (Bordeaux, 1988) Lecture Notes in Math., vol. 1402, Springer, Berlin, 1989, pp. 216–226. MR 1033286, 10.1007/BFb0083878
  • 7. Guy Métivier and Jeffrey Rauch, Interaction of piecewise smooth progressing waves for semilinear hyperbolic equations, Comm. Partial Differential Equations 15 (1990), no. 8, 1079–1140. MR 1070238, 10.1080/03605309908820716

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35L60, 58J47

Retrieve articles in all journals with MSC (2000): 35L60, 58J47


Additional Information

G. Laschon
Affiliation: Laboratoire J.A. Dieudonné, Université Nice-Sophia Antipolis, Parc Valrose, F06108 Nice cedex 2, France
Address at time of publication: Institut de Recherche Mathématique de Rennes, Université Rennes 1, Campus de Beaulieu, F35042 Rennes cedex, France
Email: laschon@maths.univ-rennes1.fr

DOI: https://doi.org/10.1090/S0002-9939-00-05813-5
Keywords: Microlocal analysis, conormal singularities, semi-linear interaction
Received by editor(s): July 22, 1999
Published electronically: October 20, 2000
Dedicated: Dedicated to Joanna
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2000 American Mathematical Society