Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Creation and propagation of logarithmic singularities by interaction of two piecewise smooth progressing waves


Author: G. Laschon
Journal: Proc. Amer. Math. Soc. 129 (2001), 1375-1384
MSC (2000): Primary 35L60, 58J47
DOI: https://doi.org/10.1090/S0002-9939-00-05813-5
Published electronically: October 20, 2000
MathSciNet review: 1814163
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

Our aim is to understand the non-conservation of the piecewise smooth regularity by a semi-linear interaction of two transverse progressing waves. Indeed, we know that this phenomenon occurs when the number of characteristic hypersurfaces passing through the locus of interaction, that is, a two-codimensional variety, is strictly inferior to the size of the considered first order strictly hyperbolic system. Thanks to the study of a significant example, we explain the obstruction to the piecewise smooth propagation by a loss of transmission property for the symbols describing the conormal singularities, which originates logarithmic singularities.


References [Enhancements On Off] (What's this?)

  • 1. J.M. Bony.
    Propagation et interaction des singularités pour des équations aux dérivées partielles non linéaires.
    In Proc. Int. Cong. Math., 1133-1146, Warszawa, 1983. MR 87f:35156
  • 2. H. Bougrini, A. Piriou, and J.P. Varenne.
    Propagation et interaction des symboles principaux pour les ondes conormales semi-linéaires.
    Commun. in Partial Differential Equations, 23:333-370, 1998. MR 99c:35003
  • 3. L. Hörmander.
    The analysis of partial differential operators.
    Springer-Verlag, New York, 1985.
  • 4. G. Laschon.
    Symbolic study of the loss of piecewise smooth regularity by interaction of semilinear waves.
    C. R. Acad. Sci. Paris, 328:865-870, 1999. MR 2000b:35158
  • 5. G. Métivier.
    Propagation, interaction, and reflection of discontinuous progressing waves.
    Amer. J. Math., 111:239-289, 1989. MR 90g:35097
  • 6. G. Métivier and J. Rauch.
    The interaction of two progressing waves.
    Springer Lecture Notes in Math., Springer-Verlag, New York, 1402:216-226, 1989. MR 90k:35176
  • 7. G. Métivier and J. Rauch.
    Interaction of piecewise smooth progressing waves for semilinear hyperbolic equations.
    Comm. In P.D.E., 15:239-289, 1990. MR 91k:35154

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35L60, 58J47

Retrieve articles in all journals with MSC (2000): 35L60, 58J47


Additional Information

G. Laschon
Affiliation: Laboratoire J.A. Dieudonné, Université Nice-Sophia Antipolis, Parc Valrose, F06108 Nice cedex 2, France
Address at time of publication: Institut de Recherche Mathématique de Rennes, Université Rennes 1, Campus de Beaulieu, F35042 Rennes cedex, France
Email: laschon@maths.univ-rennes1.fr

DOI: https://doi.org/10.1090/S0002-9939-00-05813-5
Keywords: Microlocal analysis, conormal singularities, semi-linear interaction
Received by editor(s): July 22, 1999
Published electronically: October 20, 2000
Dedicated: Dedicated to Joanna
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society