Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On absorbing extensions

Author: Klaus Thomsen
Journal: Proc. Amer. Math. Soc. 129 (2001), 1409-1417
MSC (2000): Primary 46L80, 19K35
Published electronically: October 25, 2000
MathSciNet review: 1814167
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Building on the work of Kasparov we show that there always exists a trivial absorbing extension of $A$ by $B \otimes \mathcal K$, provided only that $A$ and $B$ are separable. If $A$ is unital there is a unital trivial extension which is unitally absorbing.

References [Enhancements On Off] (What's this?)

  • [A] W. Arveson, Notes on extensions, Duke Math. J. 44 (1977), 329-355. MR 55:11056
  • [Bl] B. Blackadar, $K$-theory for Operator Algebras, MSRI publications, Springer Verlag, New York, 1986. MR 88g:46082
  • [H] N. Higson, $C^*$-Algebra Extension Theory and Duality, J. Func. Analysis 129 (1995), 349-363. MR 96c:46072
  • [K] G. Kasparov, Hilbert $C^*$-modules: theorems of Stinespring and Voiculescu, J. Oper. Th. 4 (1980), 133-150. MR 82b:46074
  • [KJT] K. Knudsen-Jensen and K. Thomsen, Elements of $KK$-theory, Birkhäuser, Boston, 1991. MR 94b:19008
  • [P] W. Paschke, $K$-theory for commutants in the Calkin algebra, Pacific J. Math. 95 (1981), 427-437. MR 82k:46101
  • [S] G. Skandalis, Une Notion de Nucléarité en $K$-Théorie (d'après J. Cuntz), K-theory 1 (1988), 549-573. MR 90b:46131
  • [V] A. Valette, A remark on the Kasparov Groups $\operatorname{Ext}^i(A,B)$, Pacific J. Math. 109 (1983), 247-255. MR 85f:46128

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L80, 19K35

Retrieve articles in all journals with MSC (2000): 46L80, 19K35

Additional Information

Klaus Thomsen
Affiliation: Institut for matematiske fag, Ny Munkegade, 8000 Aarhus C, Denmark

Received by editor(s): August 11, 1999
Published electronically: October 25, 2000
Communicated by: David R. Larson
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society