Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

First return probabilities of birth and death chains and associated orthogonal polynomials


Author: Holger Dette
Journal: Proc. Amer. Math. Soc. 129 (2001), 1805-1815
MSC (1991): Primary 60J15; Secondary 33C45
DOI: https://doi.org/10.1090/S0002-9939-00-05699-9
Published electronically: November 2, 2000
MathSciNet review: 1814114
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a birth and death chain on the nonnegative integers, integral representations for first return probabilities are derived. While the integral representations for ordinary transition probabilities given by Karlin and McGregor (1959) involve a system of random walk polynomials and the corresponding measure of orthogonality, the formulas for the first return probabilities are based on the corresponding systems of associated orthogonal polynomials. Moreover, while the moments of the measure corresponding to the random walk polynomials give the ordinary return probabilities to the origin, the moments of the measure corresponding to the associated polynomials give the first return probabilities to the origin.

As a by-product we obtain a new characterization in terms of canonical moments for the measure of orthogonality corresponding to the first associated orthogonal polynomials. The results are illustrated by several examples.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz, I.A. Stegun (1964). Handbook of Mathematical Functions. Dover, New York. MR 29:4914
  • 2. T.S. Chihara (1978). An Introduction to Orthogonal Polynomials. Gordon and Breach, N.Y. MR 58:1979
  • 3. J. Charris, M.E.H. Ismail (1986). On sieved orthogonal polynomials II: Random walk polynomials. Can. J. Math. 38, 397-415. MR 87j:33014a
  • 4. H. Dette, W.J. Studden (1997). The Theory of Canonical Moments with Applications in Statistics, Probability and Analysis. Wiley, N.Y. MR 98k:60020
  • 5. E.A. van Doorn, P. Schrijner (1993). Random walk polynomials and random walk measures. J. Comput. Appl. Math. 49, 289-296. MR 95c:60062
  • 6. S. Geronimus (1930). On a set of polynomials. Ann. Math. 31, 681-686.
  • 7. Z.S. Grinspun (1966). On a class of orthogonal polynomials (in Russian). Vestrik Leningradskogo Universiteta Seria Matematiki, Mekhaniki i Astronomii 21, 147-149. MR 34:6172
  • 8. C.C. Grosjean (1985). Theory of recursive generation of systems of orthogonal polynomials: An illustrative example. J. Comput. Appl. Math. 12-13, 299-318. MR 86g:33015
  • 9. C.C. Grosjean (1986). The weight functions, generating functions and miscellaneous properties of the sequences of orthogonal polynomials of the second kind associated with the Jacobi and the Gegenbauer polynomials. J. Comp. Appl. Math. 16, 259-307. MR 88b:33020
  • 10. L.B.W. Jolley (1961). Summation of Series. Dover, N.Y. MR 24:B511
  • 11. M. Kac (1947). Random walk and the theory of Brownian motion. Amer. Math. Monthly 54, 369-391. MR 9:46c
  • 12. S. Karlin, J. McGregor (1959). Random walks. Illinois J. Math. 3, 66-81. MR 20:7352
  • 13. A. Laforgia (1980). Sugli zeri delle funzioni di Bessel. Calcolo 17, 211-220. MR 82i:33009
  • 14. P. Nevai (1984). A new class of orthogonal polynomials. Proc. Amer. Math. Soc. 91, 409-415. MR 85f:42036
  • 15. J. Sherman (1933). On the numerators of the convergents of the Stieltjes continued fractions. Trans. Amer. Math. Soc. 35, 64-87.
  • 16. M. Skibinsky (1969). Some striking properties of Binomial and Beta moments. Ann. Math. Statist. 40, 1753-1764. MR 40:8106
  • 17. M. Skibinsky (1986). Principal representations and canonical moment sequences for distributions on an interval. J. Math. Anal. Appl., 120:95-120, 1986. MR 88c:60049
  • 18. T.J. Stieltjes (1894). Recherches sur les fractiones continues. Ann. Fac. Sci. Toulouse 8, J1-122. Ann. Fac. Scie Toulouse 9, A1-47.
  • 19. W. Van Assche (1991). Orthogonal polynomials, associated polynomials and functions of the second kind. J. Comput. Appl. Math. 37, 237-249. MR 92j:33024
  • 20. G. Szegö (1975). Orthogonal Polynomials. Amer. Math. Soc. Colloqu. Publ., Vol. 23, Providence, RI. MR 51:8724
  • 21. T.A. Whitehurst (1982). An application of orthogonal polynomials to random walks. Pacific J. Math. 99, 205-213. MR 83m:60096
  • 22. J. Wimp (1987). Explicit formulas for the associated Jacobi polynomials and some applications. Can. J. Math. 39, 983-1000. MR 88k:33023

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 60J15, 33C45

Retrieve articles in all journals with MSC (1991): 60J15, 33C45


Additional Information

Holger Dette
Affiliation: Ruhr-Universität Bochum, Fakultät für Mathematik, 44780 Bochum, Germany
Email: holger.dette@ruhr-uni-bochum.de

DOI: https://doi.org/10.1090/S0002-9939-00-05699-9
Keywords: Birth and death chain, spectral measure, orthogonal polynomials, associated polynomials, canonical moments
Received by editor(s): April 8, 1999
Received by editor(s) in revised form: September 7, 1999
Published electronically: November 2, 2000
Communicated by: Claudia M. Neuhauser
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society