Asymptotic behavior of Fourier transforms of self-similar measures

Author:
Tian-You Hu

Journal:
Proc. Amer. Math. Soc. **129** (2001), 1713-1720

MSC (2000):
Primary 42A38; Secondary 28A80.

DOI:
https://doi.org/10.1090/S0002-9939-00-05709-9

Published electronically:
November 3, 2000

MathSciNet review:
1814101

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Let be a self-similar probability measure on satisfying where and Let be the Fourier transform of A necessary and sufficient condition for to approach zero at infinity is given. In particular, if and for then if and only if is a PV-number and is not a factor of . This generalizes the corresponding theorem of Erdös and Salem for the case

**[BDGPS]**M. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J. Schreiber,*Pisot and Salem Numbers,*Birkhäuser-Verlag, Basel, 1992. MR**93k:11095****[E]**P. Erdös, On a family of symmetric Bernoulli convolutions,*Amer. J. Math.*61 (1939), 974-975. MR**1:52a****[FL]**A. Fan and K. Lau, Asymptotic behavior of multiperiodic functions ,*J. Four. Anal. and Appl.*, 4 (1998), 130-150. MR**99j:41054****[G]**A. M. Garsia, Arithmetic properties of Bernoulli convolutions,*Trans. Amer.**Math. Soc.*102 (1962), 409-432. MR**25:1409****[JW]**B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function,*Trans. Amer.**Math. Soc.*38 (1935), 48-88.**[L1]**K. Lau, Fractal measures and mean p-variations,*J. Funct. Anal*. 108 No.2 (1992), 427-457. MR**93g:28007****[L2]**K. Lau, Dimension of a family of singular Bernoulli convolutions,*J. Funct. Anal*. 116 No.2 (1993), 335-358. MR**95h:28013****[LW]**K. Lau and J. Wang, Mean quadratic variations and Fourier asymptotics of self-similar measures,*Monatsch Math.*, 115 (1993), 99-132. MR**94g:42018****[S1]**R. Salem, A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan,*Duke Math. J*. 11 (1944), 103-108. MR**5:254a****[S2]**R. Salem,*Algebraic Numbers and Fourier Analysis,*Heath, Boston (1963). MR**28:1169****[So]**B. Solomyak, On the Random Series (an Erdös problem),*Annals of Math.*142 (1995), 611-625. MR**97d:11125****[St1]**R. Strichartz, Fourier asymptotics of fractal measures,*J. Funct. Anal*. 89 (1990), 154-187. MR**91m:42015****[St2]**R. Strichartz, Self-Similar measures and their Fourier transforms I,*Indiana Univ. Math. J.,*39 (1990), 797-817. MR**92k:42015****[St3]**R. Strichartz, Self-Similar measures and their Fourier transforms II,*Trans. Amer.**Math. Soc.,*336 (1993), 335-361. MR**93e:42023**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42A38,
28A80.

Retrieve articles in all journals with MSC (2000): 42A38, 28A80.

Additional Information

**Tian-You Hu**

Affiliation:
Department of Mathematics, University of Wisconsin-Green Bay, Green Bay, Wisconsin 54311

Email:
hut@uwgb.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05709-9

Keywords:
Fourier transform,
PV-number,
self-similar measure

Received by editor(s):
August 6, 1999

Received by editor(s) in revised form:
September 16, 1999

Published electronically:
November 3, 2000

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 2000
American Mathematical Society