Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Asymptotic behavior of Fourier transforms of self-similar measures

Author: Tian-You Hu
Journal: Proc. Amer. Math. Soc. 129 (2001), 1713-1720
MSC (2000): Primary 42A38; Secondary 28A80.
Published electronically: November 3, 2000
MathSciNet review: 1814101
Full-text PDF

Abstract | References | Similar Articles | Additional Information


Let $\mu $ be a self-similar probability measure on $\mathbb{R}$ satisfying $ \mu =\sum_{j=1}^mp_j\mu \circ F_j^{-1},$ where $F_j(x)=\rho x+a_j,$ $0<$ $ \rho <1,$ $a_j\in \mathbb{R},$ $p_j>0$ and $\sum_{j=1}^mp_j=1.$ Let $\hat{\mu} (t)$ be the Fourier transform of $\mu .$ A necessary and sufficient condition for $\hat{\mu}(t)$ to approach zero at infinity is given. In particular, if $a_j=j$ and $p_j=1/m$ for $j=1,...,m,$ then $\lim \sup_{t\rightarrow \infty }\vert\hat{\mu}(t)\vert>0$ if and only if $\rho ^{-1}$ is a PV-number and $\rho ^{-1}$ is not a factor of $m$. This generalizes the corresponding theorem of Erdös and Salem for the case $m=2.$

References [Enhancements On Off] (What's this?)

  • [BDGPS] M. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J. Schreiber, Pisot and Salem Numbers, Birkhäuser-Verlag, Basel, 1992. MR 93k:11095
  • [E] P. Erdös, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974-975. MR 1:52a
  • [FL] A. Fan and K. Lau, Asymptotic behavior of multiperiodic functions $G(x)=\prod_{j=0}^\infty g(x/2^n)$, J. Four. Anal. and Appl., 4 (1998), 130-150. MR 99j:41054
  • [G] A. M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409-432. MR 25:1409
  • [JW] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), 48-88.
  • [L1] K. Lau, Fractal measures and mean p-variations, J. Funct. Anal. 108 No.2 (1992), 427-457. MR 93g:28007
  • [L2] K. Lau, Dimension of a family of singular Bernoulli convolutions, J. Funct. Anal. 116 No.2 (1993), 335-358. MR 95h:28013
  • [LW] K. Lau and J. Wang, Mean quadratic variations and Fourier asymptotics of self-similar measures, Monatsch Math., 115 (1993), 99-132. MR 94g:42018
  • [S1] R. Salem, A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan, Duke Math. J. 11 (1944), 103-108. MR 5:254a
  • [S2] R. Salem, Algebraic Numbers and Fourier Analysis, Heath, Boston (1963). MR 28:1169
  • [So] B. Solomyak, On the Random Series $\sum \pm \lambda ^n$ (an Erdös problem), Annals of Math. 142 (1995), 611-625. MR 97d:11125
  • [St1] R. Strichartz, Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), 154-187. MR 91m:42015
  • [St2] R. Strichartz, Self-Similar measures and their Fourier transforms I, Indiana Univ. Math. J., 39 (1990), 797-817. MR 92k:42015
  • [St3] R. Strichartz, Self-Similar measures and their Fourier transforms II, Trans. Amer. Math. Soc., 336 (1993), 335-361. MR 93e:42023

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42A38, 28A80.

Retrieve articles in all journals with MSC (2000): 42A38, 28A80.

Additional Information

Tian-You Hu
Affiliation: Department of Mathematics, University of Wisconsin-Green Bay, Green Bay, Wisconsin 54311

Keywords: Fourier transform, PV-number, self-similar measure
Received by editor(s): August 6, 1999
Received by editor(s) in revised form: September 16, 1999
Published electronically: November 3, 2000
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society