Depth of symmetric algebras of certain ideals

Author:
Mark R. Johnson

Journal:
Proc. Amer. Math. Soc. **129** (2001), 1581-1585

MSC (1991):
Primary 13A30, 13H10

DOI:
https://doi.org/10.1090/S0002-9939-00-05742-7

Published electronically:
October 31, 2000

MathSciNet review:
1814083

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the depth of the symmetric algebra of certain ideals in terms of the depth of the ring modulo the ideal generated by the entries of a minimal presentation matrix.

**1.**J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowing-up rings II,*J. Algebra***82**(1983), 53-83. MR**85b:13015****2.**J. Herzog, A. Simis and W. V. Vasconcelos, Koszul homology and blowing-up rings,*Commutative Algebra*(Trento, 1981), 79-169, Lecture Notes in Pure and Appl. Math., 84, Dekker, New York, 1983. MR**84k:13015****3.**M. Johnson, Second analytic deviation one ideals and their Rees algebras,*J. Pure Appl. Algebra***119**(1997), 171-183. MR**98e:13005****4.**M. Johnson, Linkage and sums of ideals,*Trans. Amer. Math. Soc.***350**(1998), 1913-1930. MR**98h:13015****5.**M. Johnson and B. Ulrich, Artin-Nagata properties and Cohen-Macaulay associated graded rings,*Compositio Math.***103**(1996), 7-29. MR**97f:13006****6.**A. Simis, B. Ulrich and W. V. Vasconcelos, Tangent Star Cones,*J. Reine Angew. Math.***483**(1997), 23-59. MR**97m:14001****7.**B. Ulrich, Artin-Nagata properties and reductions of ideals,*Commutative algebra: syzygies, multiplicities, and birational algebra*(South Hadley, MA, 1992), 373-400, Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994. MR**95a:13017**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
13A30,
13H10

Retrieve articles in all journals with MSC (1991): 13A30, 13H10

Additional Information

**Mark R. Johnson**

Affiliation:
Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701

Email:
mark@math.uark.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05742-7

Received by editor(s):
June 17, 1999

Received by editor(s) in revised form:
September 1, 1999

Published electronically:
October 31, 2000

Communicated by:
Wolmer V. Vasconcelos

Article copyright:
© Copyright 2000
American Mathematical Society