A lifting theorem for symmetric commutants

Author:
Gelu Popescu

Journal:
Proc. Amer. Math. Soc. **129** (2001), 1705-1711

MSC (2000):
Primary 47F25, 47A57, 47A20; Secondary 30E05

Published electronically:
October 31, 2000

MathSciNet review:
1814100

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be bounded operators on a Hilbert space such that . Given a symmetry on , i.e., , we define the -symmetric commutant of to be the operator space

In this paper we obtain lifting theorems for symmetric commutants. The result extends the Sz.-Nagy-Foias commutant lifting theorem (), the anticommutant lifting theorem of Sebestyén ( ), and the noncommutative commutant lifting theorem ( ). Sarason's interpolation theorem for is extended to symmetric commutants on Fock spaces.

**[APo]**A. Arias and G. Popescu,*Noncommutative interpolation and Poisson transforms*, Israel J. Math.**115**(2000), 205-234. CMP**2000:10****[DMP]**R. G. Douglas, P. S. Muhly, and Carl Pearcy,*Lifting commuting operators*, Michigan Math. J.**15**(1968), 385–395. MR**0236752****[K]**M. Krein,*The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I*, Rec. Math. [Mat. Sbornik] N.S.**20(62)**(1947), 431–495 (Russian, with English summary). MR**0024574****[Po1]**Gelu Popescu,*Isometric dilations for infinite sequences of noncommuting operators*, Trans. Amer. Math. Soc.**316**(1989), no. 2, 523–536. MR**972704**, 10.1090/S0002-9947-1989-0972704-3**[Po2]**Gelu Popescu,*Characteristic functions for infinite sequences of noncommuting operators*, J. Operator Theory**22**(1989), no. 1, 51–71. MR**1026074****[Po3]**Gelu Popescu,*von Neumann inequality for (𝐵(ℋ)ⁿ)₁*, Math. Scand.**68**(1991), no. 2, 292–304. MR**1129595****[Po4]**Gelu Popescu,*On intertwining dilations for sequences of noncommuting operators*, J. Math. Anal. Appl.**167**(1992), no. 2, 382–402. MR**1168596**, 10.1016/0022-247X(92)90214-X**[Po5]**Gelu Popescu,*Multi-analytic operators on Fock spaces*, Math. Ann.**303**(1995), no. 1, 31–46. MR**1348353**, 10.1007/BF01460977**[Po6]**Gelu Popescu,*Functional calculus for noncommuting operators*, Michigan Math. J.**42**(1995), no. 2, 345–356. MR**1342494**, 10.1307/mmj/1029005232**[Po7]**Gelu Popescu,*Interpolation problems in several variables*, J. Math. Anal. Appl.**227**(1998), no. 1, 227–250. MR**1652931**, 10.1006/jmaa.1998.6101**[Po8]**G. Popescu,*Commutant lifting, tensor algebras, and functional calculus*, Proc. Edinburg Math. Soc. (2), to appear.**[Po9]**G. Popescu,*Spectral liftings in Banach algebras and interpolation in several variables*, preprint, 1998.**[S]**Donald Sarason,*Generalized interpolation in 𝐻^{∞}*, Trans. Amer. Math. Soc.**127**(1967), 179–203. MR**0208383**, 10.1090/S0002-9947-1967-0208383-8**[Se]**Zoltán Sebestyén,*Anticommutant lifting and anticommuting dilation*, Proc. Amer. Math. Soc.**121**(1994), no. 1, 133–136. MR**1176485**, 10.1090/S0002-9939-1994-1176485-X**[SzF1]**Béla Sz.-Nagy and Ciprian Foiaş,*Dilatation des commutants d’opérateurs*, C. R. Acad. Sci. Paris Sér. A-B**266**(1968), A493–A495 (French). MR**0236755****[SzF2]**Béla Sz.-Nagy and Ciprian Foiaș,*Harmonic analysis of operators on Hilbert space*, Translated from the French and revised, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. MR**0275190**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47F25,
47A57,
47A20,
30E05

Retrieve articles in all journals with MSC (2000): 47F25, 47A57, 47A20, 30E05

Additional Information

**Gelu Popescu**

Affiliation:
Division of Mathematics and Statistics, The University of Texas at San Antonio, San Antonio, Texas 78249

Email:
gpopescu@math.utsa.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05750-6

Received by editor(s):
March 1, 1999

Received by editor(s) in revised form:
September 16, 1999

Published electronically:
October 31, 2000

Additional Notes:
The author was partially supported by NSF Grant DMS-9531954.

Communicated by:
David R. Larson

Article copyright:
© Copyright 2000
American Mathematical Society