Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convex curves, Radon transforms and convolution operators defined by singular measures


Authors: Fulvio Ricci and Giancarlo Travaglini
Journal: Proc. Amer. Math. Soc. 129 (2001), 1739-1744
MSC (2000): Primary 42B10
DOI: https://doi.org/10.1090/S0002-9939-00-05751-8
Published electronically: October 31, 2000
MathSciNet review: 1814105
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

Let $\Gamma$ be a convex curve in the plane and let $\mu \in M(\mathbb{R}^{2})$ be the arc-length measure of $\Gamma.$ Let us rotate $\Gamma$ by an angle $\theta $ and let $\mu_{\theta }$ be the corresponding measure. Let $T f(x,\theta)=f*\mu _{\theta }(x)$. Then \begin{equation*}\Vert Tf\Vert _{L^{3}(\mathbb{T}\times \mathbb{R}^{2})}\leq c\Vert f\Vert _{L^{3/2}(\mathbb{R}^{2})}. \end{equation*} This is optimal for an arbitrary $\Gamma $. Depending on the curvature of $\Gamma $, this estimate can be improved by introducing mixed-norm estimates of the form \begin{equation*}\left \Vert Tf \right \Vert _{L^{s}\left (\mathbb{T} ,L^{p^{\pr... ...c\left \Vert f\right \Vert _{L^{p}\left (\mathbb{R}^{2}\right)} \end{equation*} where $p$ and $p^{\prime }$ are conjugate exponents.


References [Enhancements On Off] (What's this?)

  • [BIT] L. Brandolini, A. Iosevich and G. Travaglini, Spherical means and the restriction phenomenon, preprint.
  • [BRT] L. Brandolini, M. Rigoli and G. Travaglini, Average decay of Fourier transforms and geometry of convex sets, Rev. Mat. Iberoam. 14 (1998), 519-560. MR 2000a:42017
  • [C] M. Christ, Endpoint bounds for singular fractional integral operators, unpublished.
  • [GS] I.M. Gel'fand and G.E. Shilov, Generalized functions, Academic Press, 1964. MR 55:8786a
  • [O] D.M. Oberlin, Multilinear proofs for two theorems on circular averages, Coll. Math. LXIII (1992), 187-190. MR 93m:42005
  • [OS] D.M. Oberlin and E.M. Stein, Mapping properties of the Radon transform, Indiana Univ. Math. J. 31 (1982), 641-650. MR 84a:44002
  • [P] A.N. Podkorytov, The asymptotics of a Fourier transform on a convex curve, Vestn. Leningr. Univ. Mat. 24 (1991), 57-65. MR 93h:42019
  • [Ra] B. Randol, A lattice point problem, Trans. Amer. math. Soc. 121 (1966), 257-268. MR 34:1291
  • [Ri] F. Ricci, $L^{p}$-$L^{q}$ boundedness for convolution operators defined by singular measures in $\mathbb{R}^{n}$, Boll. Un. Mat. Ital. A 11 (1997), 237-252. MR 99c:42023
  • [RS] F. Ricci and E.M. Stein, Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds, Journ. Funct. Anal. 86 (1989), 360-389. MR 90m:22027
  • [S] R. Strichartz, Convolution with kernels having singularities on a sphere, Trans. Amer. Math. Soc. 148 (1970), 461-471.MR 41:876

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B10

Retrieve articles in all journals with MSC (2000): 42B10


Additional Information

Fulvio Ricci
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email: fricci@polito.it

Giancarlo Travaglini
Affiliation: Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
Email: travaglini@matapp.unimib.it

DOI: https://doi.org/10.1090/S0002-9939-00-05751-8
Keywords: Convolution operators, singular measures, Radon transforms
Received by editor(s): May 15, 1999
Received by editor(s) in revised form: September 27, 1999
Published electronically: October 31, 2000
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society