Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The pq-condition for $3$-manifold groups

Author: Siddhartha Gadgil
Journal: Proc. Amer. Math. Soc. 129 (2001), 1873-1875
MSC (2000): Primary 57M05, 57M60
Published electronically: November 30, 2000
MathSciNet review: 1814121
Full-text PDF

Abstract | References | Similar Articles | Additional Information


We give an elementary, topological proof of the fact that any subgroup of order $pq$ of a finite $3$-manifold group is cyclic if $p$ and $q$are distinct odd primes. This condition, together with related results of Milnor and Reidemeister, implies that such a group acts orthogonally on some sphere.

References [Enhancements On Off] (What's this?)

  • 1. E. G. Mennike Finite fundamental groups of three-dimensional manifolds Mat. Zametki 57 (1995), 105-117 MR 97e:57001
  • 2. J. Milnor Groups which act on $S^n$ without fixed points Jour. Amer. Math. Soc. 79 (1957), 623-630. MR 19:761d
  • 3. K. Reidemeister Kommutative Fundamentalgrüppen Monatsch. Math. Phy. 43 (1935), 20-28.
  • 4. P. Smith Permutable periodic transformations Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 105-108. MR 5:274d
  • 5. H. Zassenhaus Über endliche Fastkörper Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 79 (1936), 187-220.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57M05, 57M60

Retrieve articles in all journals with MSC (2000): 57M05, 57M60

Additional Information

Siddhartha Gadgil
Affiliation: Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11794

Received by editor(s): October 11, 1999
Published electronically: November 30, 2000
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society