Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Immersed surfaces of prescribed Gauss curvature into Minkowski space


Author: Yuxin Ge
Journal: Proc. Amer. Math. Soc. 129 (2001), 2093-2101
MSC (2000): Primary 53C42, 53B25
DOI: https://doi.org/10.1090/S0002-9939-00-05770-1
Published electronically: December 7, 2000
MathSciNet review: 1825922
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a positive real valued function $k(x)$ on the disc, we will immerse the disc into three dimensional Minkowski space in such a way that Gauss curvature at the image point of $x$ is $-k(x)$. Our approach lies on the construction of Gauss map of surfaces.


References [Enhancements On Off] (What's this?)

  • 1. S. I. Al'ber, Spaces of mappings into a manifold with negative curvature, Dokl. Akad. Nauk. SSSR. Tom 178 (1968), No. 1. MR 37:5817
  • 2. J. Eells and L. Lemaire, A report on the harmonic maps, Bull. London. Math. Soc 10 (1978), 1-68.
  • 3. Y. Ge, An elliptic variational approach to immersed surfaces of prescribed Gauss curvature, Calc. Var. 7 (1998) 173-190.
  • 4. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Studies. 105, Princeton. Univ. Press, Princeton (1983). MR 86b:49003
  • 5. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren. 224, Spinger, Berlin-Heidelberg-New York-Tokyo (1983). MR 86c:35035
  • 6. P. Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967) 673-687. MR 35:4856
  • 7. P. Hartman and A. Wintner, On the local behavior of solutions of nonparabolic partial differential equations, Amer. J. Math. 75 (1953) 449-476. MR 15:318b
  • 8. F. Hélein, Applications harmoniques, lois de conservation et repère mobile, Diderot éditeur, Paris-New York-Amsterdam (1996).
  • 9. J. Jost, Two-dimensional geometric variational problems, Wiley (1991). MR 92h:58045
  • 10. J. Jost and M. Meier, Boundary regularity for minima of certain quadratic functionals, Math. Ann. 262 (1983) 549-561. MR 84i:35051
  • 11. H. Lewy, On differential geometry in the large, I (Minkowski's problem), Trans. Amer. Math. Soc. 43 (1938) 258-270. CMP 95:18
  • 12. C. B. Morrey, Multiple integrals in the calculus of variations, Springer, Grundlehren. 130, New York (1966). MR 34:2380
  • 13. L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1966), 337-394. MR 15:347b
  • 14. Stoïlow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Paris (1938), Gauthier-Villars, p. 130.
  • 15. M. Struwe, Variational Methods, Springer, Berlin-Heidelberg-New York-Tokyo (1990).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C42, 53B25

Retrieve articles in all journals with MSC (2000): 53C42, 53B25


Additional Information

Yuxin Ge
Affiliation: Département de Mathématiques, Faculté de Sciences et Technologie, Université Paris XII-Val de Marne, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France; C.M.L.A., E.N.S de Cachan, 61, avenue du Président Wilson, 94235 Cachan Cedex, France
Email: ge@cmla.ens-cachan.fr

DOI: https://doi.org/10.1090/S0002-9939-00-05770-1
Keywords: Gauss curvature, surfaces, Minkowski space, harmonic maps
Received by editor(s): April 29, 1999
Received by editor(s) in revised form: October 20, 1999
Published electronically: December 7, 2000
Communicated by: Bennett Chow
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society