Douglas algebras which admit codimension 1 linear isometries

Author:
Keiji Izuchi

Journal:
Proc. Amer. Math. Soc. **129** (2001), 2069-2074

MSC (2000):
Primary 46J15, 47B38

DOI:
https://doi.org/10.1090/S0002-9939-00-05842-1

Published electronically:
November 30, 2000

MathSciNet review:
1825919

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Let be a Douglas algebra and let be its Bourgain algebra. It is proved that admits a codimension 1 linear isometry if and only if . This answers the conjecture of Araujo and Font.

**[1]**J. Araujo and J. J. Font,*Codimension 1 linear isometries on function algebras*, Proc. Amer. Math. Soc.**127**(1999), 2273-2281. MR**99j:46059****[2]**J. Araujo and J. J. Font,*Linear isometries between subspaces of continuous functions*, Trans. Amer. Math. Soc.**349**(1997), 413-428. MR**97d:46026****[3]**S. Axler and P. Gorkin,*Division in Douglas algebras*, Michigan Math. J.**31**(1984), 89-94. MR**85h:46075****[4]**S.-Y. Chang,*A characterization of Douglas algebras*, Acta Math.**137**(1976), 81-89. MR**55:1074a****[5]**J. Cima and R. Timoney,*The Dunford Pettis property for certain planner uniform algebras*, Michigan Math. J.**34**(1987), 99-104. MR**88e:46023****[6]**J. Garnett,*Bounded Analytic Functions*, Academic Press, New York, 1981. MR**83g:30037****[7]**P. Gorkin, K. Izuchi, and R. Mortini,*Bourgain algebras of Douglas algebras*, Canad. J. Math.**44**(1992), 797-804. MR**94c:46104****[8]**P. Gorkin, H. -M. Lingenberg, and R. Mortini,*Homeomorphic disks in the spectrum of*, Indiana Univ. Math. J.**39**(1990), 961-983. MR**92b:46082****[9]**C. Guillory, K. Izuchi and D. Sarason,*Interpolating Blaschke products and division in Douglas algebras*, Proc. Roy. Irish Acad. Sect. A**84**(1984), 1-7. MR**86j:46054****[10]**K. Hoffman,*Banach Spaces of Analytic Functions*, Prentice Hall, Englewood Cliffs, N.J., 1962. MR**24:A2844****[11]**K. Hoffman,*Bounded analytic functions and Gleason parts*, Michigan Math. J.**40**(1993), 53-75.**[12]**K. Izuchi,*Interpolating Blaschke products and factorization theorems*, J. London Math. Soc. (2)**50**(1994), 547-567. MR**95k:46086****[13]**D. Marshall,*Subalgebras of**containing*, Acta Math.**137**(1976), 91-98. MR**55:10746****[14]**D. Sarason,*Algebras of functions on the unit circle*, Bull. Amer. Math. Soc.**79**(1973), 286-299. MR**48:2777****[15]**R. Younis,*Division in Douglas algebras and some applications*, Arch. Math.**45**(1985), 555-560. MR**87b:46059**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46J15,
47B38

Retrieve articles in all journals with MSC (2000): 46J15, 47B38

Additional Information

**Keiji Izuchi**

Affiliation:
Department of Mathematics, Niigata University, Niigata 950-2181, Japan

Email:
izuchi@math.sc.niigata-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-00-05842-1

Received by editor(s):
November 15, 1999

Published electronically:
November 30, 2000

Additional Notes:
Supported by Grant-in-Aid for Scientific Research (No.10440039), Ministry of Education, Science and Culture.

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2000
American Mathematical Society