Douglas algebras which admit codimension 1 linear isometries

Author:
Keiji Izuchi

Journal:
Proc. Amer. Math. Soc. **129** (2001), 2069-2074

MSC (2000):
Primary 46J15, 47B38

Published electronically:
November 30, 2000

MathSciNet review:
1825919

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Let be a Douglas algebra and let be its Bourgain algebra. It is proved that admits a codimension 1 linear isometry if and only if . This answers the conjecture of Araujo and Font.

**[1]**Jesús Araujo and Juan J. Font,*Codimension 1 linear isometries on function algebras*, Proc. Amer. Math. Soc.**127**(1999), no. 8, 2273–2281. MR**1485456**, 10.1090/S0002-9939-99-04718-8**[2]**Jesús Araujo and Juan J. Font,*Linear isometries between subspaces of continuous functions*, Trans. Amer. Math. Soc.**349**(1997), no. 1, 413–428. MR**1373627**, 10.1090/S0002-9947-97-01713-3**[3]**Sheldon Axler and Pamela Gorkin,*Divisibility in Douglas algebras*, Michigan Math. J.**31**(1984), no. 1, 89–94. MR**736473**, 10.1307/mmj/1029002966**[4]**Sun Yung A. Chang,*A characterization of Douglas subalgebras*, Acta Math.**137**(1976), no. 2, 82–89. MR**0428044****[5]**Joseph A. Cima and Richard M. Timoney,*The Dunford-Pettis property for certain planar uniform algebras*, Michigan Math. J.**34**(1987), no. 1, 99–104. MR**873024**, 10.1307/mmj/1029003487**[6]**John B. Garnett,*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971****[7]**Pamela Gorkin, Keiji Izuchi, and Raymond Mortini,*Bourgain algebras of Douglas algebras*, Canad. J. Math.**44**(1992), no. 4, 797–804. MR**1178569**, 10.4153/CJM-1992-047-6**[8]**P. Gorkin, H.-M. Lingenberg, and R. Mortini,*Homeomorphic disks in the spectrum of 𝐻^{∞}*, Indiana Univ. Math. J.**39**(1990), no. 4, 961–983. MR**1087181**, 10.1512/iumj.1990.39.39046**[9]**Carroll Guillory, Keiji Izuchi, and Donald Sarason,*Interpolating Blaschke products and division in Douglas algebras*, Proc. Roy. Irish Acad. Sect. A**84**(1984), no. 1, 1–7. MR**771641****[10]**Kenneth Hoffman,*Banach spaces of analytic functions*, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR**0133008****[11]**K. Hoffman,*Bounded analytic functions and Gleason parts*, Michigan Math. J.**40**(1993), 53-75.**[12]**Keiji Izuchi,*Interpolating Blaschke products and factorization theorems*, J. London Math. Soc. (2)**50**(1994), no. 3, 547–567. MR**1299457**, 10.1112/jlms/50.3.547**[13]**A. McD. Mercer,*Integral representations and inequalities for Bessel functions*, SIAM J. Math. Anal.**8**(1977), no. 3, 486–490. MR**0437824****[14]**Donald Sarason,*Algebras of functions on the unit circle*, Bull. Amer. Math. Soc.**79**(1973), 286–299. MR**0324425**, 10.1090/S0002-9904-1973-13144-1**[15]**Rahman Younis,*Division in Douglas algebras and some applications*, Arch. Math. (Basel)**45**(1985), no. 6, 555–560. MR**818297**, 10.1007/BF01194897

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46J15,
47B38

Retrieve articles in all journals with MSC (2000): 46J15, 47B38

Additional Information

**Keiji Izuchi**

Affiliation:
Department of Mathematics, Niigata University, Niigata 950-2181, Japan

Email:
izuchi@math.sc.niigata-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-00-05842-1

Received by editor(s):
November 15, 1999

Published electronically:
November 30, 2000

Additional Notes:
Supported by Grant-in-Aid for Scientific Research (No.10440039), Ministry of Education, Science and Culture.

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2000
American Mathematical Society