Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The relative pluricanonical stability for 3-folds of general type

Author: Meng Chen
Journal: Proc. Amer. Math. Soc. 129 (2001), 1927-1937
MSC (1991): Primary 14C20, 14E05, 14E35
Published electronically: November 22, 2000
MathSciNet review: 1825899
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to improve a theorem of János Kollár by a different method. For a given smooth complex projective threefold $X$ of general type, suppose the plurigenus $P_{k}(X)\ge 2$. Kollár proved that the $(11k+5)$-canonical map is birational. Here we show that either the $(7k+3)$-canonical map or the $(7k+5)$-canonical map is birational and that the $(13k+6)$-canonical map is stably birational onto its image. Suppose $P_{k}(X)\ge 3$. Then the $m$-canonical map is birational for $m\ge 10k+8$. In particular, $\phi_{12}$ is birational whenever $p_{g}(X)\ge 2$ and $\phi_{11}$ is birational whenever $p_{g}(X)\ge 3$.

References [Enhancements On Off] (What's this?)

  • 1. W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574
  • 2. A. R. Fletcher, Contributions to Riemann-Roch on projective 3-folds with only canonical singularities and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 221–231. MR 927958
  • 3. Yujiro Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann. 261 (1982), no. 1, 43–46. MR 675204, 10.1007/BF01456407
  • 4. Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 283–360. MR 946243
  • 5. János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838, 10.2307/1971351
  • 6. János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
  • 7. Miles Reid, Canonical 3-folds, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR 605348
  • 8. Igor Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. (2) 127 (1988), no. 2, 309–316. MR 932299, 10.2307/2007055
  • 9. S. G. Tankeev, 𝑛-dimensional canonically polarized varieties, and varieties of basic type, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 31–44 (Russian). MR 0277528
  • 10. Eckart Viehweg, Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1–8. MR 667459, 10.1515/crll.1982.335.1
  • 11. Gang Xiao, Finitude de l’application bicanonique des surfaces de type général, Bull. Soc. Math. France 113 (1985), no. 1, 23–51 (French, with English summary). MR 807825

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 14C20, 14E05, 14E35

Retrieve articles in all journals with MSC (1991): 14C20, 14E05, 14E35

Additional Information

Meng Chen
Affiliation: Department of Applied Mathematics, Tongji University, Shanghai, 200092, People’s Republic of China

Received by editor(s): December 12, 1998
Received by editor(s) in revised form: November 12, 1999
Published electronically: November 22, 2000
Additional Notes: The author was supported in part by the National Natural Science Foundation of China
Communicated by: Ron Donagi
Article copyright: © Copyright 2000 American Mathematical Society