Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Necessary and sufficient conditions for s-Hopfian manifolds to be codimension-2 fibrators


Authors: Young Ho Im and Yongkuk Kim
Journal: Proc. Amer. Math. Soc. 129 (2001), 2135-2140
MSC (2000): Primary 57N15, 55M25; Secondary 57M10, 54B15
DOI: https://doi.org/10.1090/S0002-9939-00-05998-0
Published electronically: December 13, 2000
MathSciNet review: 1825927
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Fibrators help detect approximate fibrations. A closed, connected $n$-manifold $N$ is called a codimension-2 fibrator if each map $p: M \to B$ defined on an $(n+2)$-manifold $M$ such that all fibre $p^{-1}(b), b\in B$, are shape equivalent to $N$ is an approximate fibration. The most natural objects $N$ to study are s-Hopfian manifolds. In this note we give some necessary and sufficient conditions for s-Hopfian manifolds to be codimension-2 fibrators.


References [Enhancements On Off] (What's this?)

  • 1. N. Chinen, Finite groups and approximate fibrations, Topology Appl. 102 (2000) 59-88 CMP 2000:08
  • 2. S.E. Cappell and J.L. Shaneson, Some new four-manifolds, Ann. of Math. (2) 104 (1976) 61-72 MR 54:6167
  • 3. D.S. Coram and P.F. Duvall, Approximate fibration, Rocky Mountain J. Math. 7 (1977) 275-288 MR 56:1296
  • 4. D.S. Coram and P.F. Duvall, Approximate fibration and a movability condition for maps, Pacific J. Math. 72 (1977) 41-56 MR 57:7597
  • 5. D.S. Coram and P.F. Duvall, Mappings from $S^3$ to $S^2$ whose point inverses have the shape of a circle, General Topology Appl. 10 (1979) 239-246 MR 81b:57009
  • 6. R.J. Daverman, Submanifold decompositions that induce approximate fibrations, Topology Appl. 33 (1989) 173-184 MR 91d:57013
  • 7. R.J. Daverman, Hyper-Hopfian groups and approximate fibrations, Compositio Math. 86 (1993) 159-176 MR 94b:55022
  • 8. R.J. Daverman, Codimension-2 fibrators with finite fundamental groups, Proc. Amer. Math. Soc. 127 (1999) 881-888 MR 2000a:57051
  • 9. R.J. Daverman and Y. Kim, 2-groups and approximate fibrations, Topology Appl. To appear
  • 10. R.J. Daverman, Y.H. Im and Y. Kim, Products of Hopfian manifolds and codimension-2 fibrators, Topology Appl. 103 (2000) 323-338 CMP 2000:12
  • 11. R. Fintushel and R.J. Stern, Smooth free involutions on homotopy $4k$-spheres, Michigan Math. J. 30 (1983) 37-51 MR 84f:57025
  • 12. J.A. Hillman, The algebraic characterization of geometric $4$-manifolds, Cambridge Univ. Press, Cambridge, 1994 MR 95m:57032
  • 13. J.A. Hillman, $2$-knots and their groups, Cambridge Univ. Press, Cambridge, 1989 MR 90d:57025
  • 14. R. Hirshon, Some properties of endomorphisms in residually finite groups, J. Austral. Math. Soc. Series A 34 (1977), 117-120. MR 57:9847
  • 15. Y.H. Im and Y. Kim, Hopfian and strongly hopfian manifolds, Fund. Math. 159 (1999) 127-134 MR 99j:57023
  • 16. Y. Kim, Strongly Hopfian manifolds as codimension-2 fibrators. Topology Appl. 92 (1999) 237-245 MR 2000g:57036
  • 17. Y. Kim, Connected sums of manifolds which induce approximate fibrations, Proc. Amer. Math. Soc. 128 (2000) 1497-1506 MR 2000j:57052
  • 18. Y. Kim, Manifolds with hyper-Hopfian fundamental group as codimension-2 fibrators, Topology Appl. 96 (1999) 241-248 CMP 2000:01
  • 19. S. Lopez de Medrano, Involutions on manifolds, Springer-Verlag, New York, (1971) MR 45:7747

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57N15, 55M25, 57M10, 54B15

Retrieve articles in all journals with MSC (2000): 57N15, 55M25, 57M10, 54B15


Additional Information

Young Ho Im
Affiliation: Department of Mathematics, Pusan National University, Pusan, 609-735, Korea
Email: yhim@hyowon.pusan.ac.kr

Yongkuk Kim
Affiliation: Department of Mathematics, Kyungpook National University, Taegu, 702-701, Korea
Email: yongkuk@knu.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-00-05998-0
Keywords: Codimension-2 fibrator, s-Hopfian manifold, Hopfian group, approximate fibration
Received by editor(s): October 19, 1999
Published electronically: December 13, 2000
Additional Notes: The first author’s research was supported by Korea Research Foundation Grant (KRF-2000-041-D00023)
The second author’s research was supported by Korea Research Foundation Grant (KRF-2000-015-DP0034)
Communicated by: Ralph Cohen
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society