SEPARATION FOR KERNELS OF HANKEL OPERATORS

CAIXING GU

(Communicated by Joseph A. Ball)

Abstract. We prove that for two Hankel operators H_{a_1} and H_{a_2} on the Hardy space of the unit disk either the kernel of $H_{a_1}^* H_{a_2}$ equals the kernel of H_{a_2} or the kernel of $H_{a_2}^* H_{a_1}$ equals the kernel of H_{a_1}. In fact we prove a version of the above result for products of an arbitrary finite number of Hankel operators. Some immediate corollaries are generalizations of the result of Brown and Halmos on zero products of two Hankel operators and the result of Axler, Chang and Sarason on finite rank products of two Hankel operators. Simple examples show our results are sharp.

1. Introduction

Let L^2 be the space of Lebesgue square integrable functions on the unit circle and L^∞ be the space of essentially bounded functions on the unit circle. The Hardy space H^2 is the closed linear span of analytic polynomials in L^2. Let P be the projection of L^2 onto H^2. For $f \in L^\infty$, the Toeplitz operator $T_f: H^2 \to H^2$ with symbol f is defined by the rule $T_f h = P(fh)$. The Hankel operator $H_f: H^2 \to L^2 \otimes H^2$ with symbol f is defined by $H_f h = (I - P)(fh)$. Let $g \in L^\infty$. The Toeplitz operators and Hankel operators are connected by the following important relation:

$$T_f g - T_f T_g = H_f^* H_g.$$

The Hankel operator H_f depends only on $(I - P)f$. If $(I - P)f = \sum_{k=1}^\infty f_k z^k$, then H_f has a matrix representation (called a Hankel matrix) $(f_{k+l})_{k,l \geq 0}$ with respect to bases $\{z^k\}_{k=0}^\infty$ of H^2 and $\{z^k\}_{k=1}^\infty$ of $L^2 \otimes H^2$.

The present work is motivated by a problem on finite rank products of Hankel operators. The classical Kronecker’s result \cite{Kronecker} on finite Hankel rank matrices is that H_f is of finite rank if and only if $(I - P)f$ is a rational function, and in this case the rank is equal to the degree of $(I - P)f$. Here we recall that if $r = p/q$ for polynomials p and q, the degree of r is the maximum of the degree of p and the degree of q. Axler, Chang and Sarason \cite{ACS} proved, among other things, that

$$\text{rank}(H_f^* H_g) = \min\{\deg((I - P)f), \deg((I - P)g)\}.$$
In other words \(H_f^* H_g \) is of finite rank if and only if either \(H_f \) or \(H_g \) is of finite rank, and in this case the rank of \(H_f^* H_g \) is equal to the minimum of the rank of \(H_f \) and the rank of \(H_g \). The proof of the above result is elegant and uses Beurling’s invariant subspace theorem. A purely algebraic proof was given by Richman \[3\]. He does not assume that \(H_f \) and \(H_g \) are bounded, so his result is slightly stronger. As long as \(H_f^* H_g \) is a bounded operator, the same result holds. He showed that the analogue of his result for products of three Hankel matrices does not hold by displaying three Hankel matrices (not all are bounded) whose product is zero. He raised the question of whether or not the rank of the product of three bounded Hankel operators is equal to the minimum of the ranks of the individual ones.

Xia and Zheng \[7\] discussed zero or compact products of three Hankel operators. Let \(\theta_i, i = 1, 2, 3 \), be three inner functions. They proved that \(H_{\theta_1}^* H_{\theta_2}^* H_{\theta_3} \) is zero if and only if \(\theta_1 \theta_3 \) divides \(\theta_2 - \lambda \) for some constant \(\lambda \). For example, \(H_{\theta_1}^* H_{\theta_2}^* H_{\theta_3} = 0 \). This answers negatively Richman’s question.

Let \(a_i \in L^\\infty \) for \(i = 1, \cdots, n \) throughout the paper. In \[3\] we characterize when a product of four Hankel operators is of finite rank and use this characterization to prove that

\[
\max_{\sigma} \{ \text{rank}(H_{a_{\sigma(1)}}^* H_{a_{\sigma(2)}}^* H_{a_{\sigma(3)}}^* H_{a_{\sigma(4)}}^*) \} = \min_{1 \leq i \leq 4} \text{rank}(H_{a_i})
\]

where the maximum is taken over all permutations \(\sigma \) of \(\{1, 2, 3, 4\} \). A similar rank formula holds for products of three Hankel operators.

In this paper we extend the above formula to products of an arbitrary finite number of Hankel operators by proving a separation principle for kernels of products of Hankel operators, which is interesting in itself. Let \(S_n \) be the permutation group of \(n \) integers \(\{1, \cdots, n\} \). For notational convenience, let

\[
H(a_{\sigma(1)}, \cdots, a_{\sigma(n)}) = H_{a_{\sigma(1)}}^* H_{a_{\sigma(2)}}^* \cdots H_{a_{\sigma(2k-1)}}^* H_{a_{\sigma(2k)}}
\]

if \(n = 2k \) is even and

\[
H(a_{\sigma(1)}, \cdots, a_{\sigma(n)}) = H_{a_{\sigma(1)}}^* H_{a_{\sigma(2)}}^* \cdots H_{a_{\sigma(2k-1)}}^* H_{a_{\sigma(2k)}}^* H_{a_{\sigma(2k+1)}}
\]

if \(n = 2k + 1 \) is odd.

Theorem 1.1. There exists a permutation \(\sigma \in S_n \) such that the kernel of \(H(a_{\sigma(1)}, \cdots, a_{\sigma(n)}) \) is equal to the kernel of \(H_{a_{\sigma(n)}} \).

For an operator \(A \), \(A \) is of finite rank if and only if the kernel of \(A \) is of finite codimension, and in this case the rank of \(A \) is equal to the codimension of the kernel of \(A \). Thus we have the following result.

Corollary 1.2. Using the notation as above, we have

\[
\max_{\sigma \in S_{n-1}} \text{rank}(H(a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_n)) = \min_{1 \leq i \leq n} \text{rank}(H_{a_i}).
\]

Corollary 1.3. If \(H(a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_n) = 0 \) for all permutations \(\sigma \in S_{n-1} \), then one of \(H_{a_i} \) is zero.

For \(n = 2 \) in Corollary \[1,3\] this is the result of Brown and Halmos \[2\]. For \(n = 3 \) in Corollary \[4,3\] this result is slightly stronger than Theorem 3.3 in the paper \[7\] by Xia and Zheng.
2. The main result

For an operator A, $\text{Ker}(A)$, $\text{Range}(A)$ and $\text{rank}(A)$ denote the kernel, range and rank of A, respectively ($\text{rank}(A) = \infty$ if A is not a finite rank operator). For an inner function $\theta \in H^2$, let $\mathcal{H}(\theta) = H^2 \ominus \theta \overline{H^2}$.

The following lemma is well known (see [5] for example).

Lemma 2.1. $\text{Ker}(H_f) \neq \{0\}$ if and only if f is of the form $\overline{\theta}b$ where θ is some inner function and $b \in H^\infty$ has the property that the inner part of b and θ are coprime. Furthermore we have:

1. $\text{Ker}(H_{\eta b}) = \theta H^2$, $\text{Ker}(H_{\overline{\eta}b}) = \overline{\theta}H^2$,
2. $\text{closure}\{\text{Range}(H_{\eta b})\} = (\text{Ker}(H_{\overline{\eta}b}))^\perp = H^2 \ominus \theta H^2 = \mathcal{H}(\theta)$,
3. $\text{closure}\{\text{Range}(H_{\overline{\eta}b})\} = \overline{\mathcal{H}(\theta)}$.

Lemma 2.2. Let $\sigma \in S_n$ be the permutation such that $\sigma(1) = n$ and $\sigma(i) = i - 1$ for $2 \leq i \leq n$. Let C be any bounded linear operator with range in H^2. There exists an i ($1 \leq i \leq n$) such that

$$\text{Ker}(H_{*\sigma(i)}^*H_aC) = \text{Ker}(H_aC).$$

Similarly, there exists an i ($1 \leq i \leq n$) such that

$$\text{Ker}(H_{*\sigma(i)}H_a^*D) = \text{Ker}(H_a^*D),$$

where D is any bounded linear operator with range in $L^2 \ominus H^2$.

Proof. It is clear that if $\text{Ker}(H_{*\sigma(i)}^*) = 0$ for some i, we are done. Therefore by Lemma 2.1 we can assume that for $i = 1, \ldots, n$, $a_i = \overline{\theta_i}b_i$ where θ_i is inner and $b_i \in H^\infty$ has the property that the inner part of b_i and θ_i are coprime. Let C denote the kernel of A and θ_i be any bounded linear operator with range in K. We prove the lemma by contradiction. If (2.1) does not hold, let p_i be non-zero such that $p_i = Cd_i$ for some $d_i \in K$ and

$$p_i \in \text{Ker}(H_{*\sigma(i)}^*H_{a_i}) \ominus \theta_i H^2, \quad i = 1, \ldots, n.$$

Thus $H_{a_i}p_i \in \text{Ker}(H_{*\sigma(i)}^*)$. By Lemma 2.1

$$\overline{\theta_i}b_ip_i = z\theta_{*\sigma(i)}^{*}h_i + k_i, \quad i = 1, \ldots, n,$$

for some analytic functions $h_i, k_i \in H^2$. Rewrite the above equations as

$$b_ip_i - \theta_i k_i = \theta_i \overline{\theta_{*\sigma(i)}}zh_i$$

for $i = 2, \ldots, n$. Taking products of both sides of above n equations gives

$$\prod_{i=1}^{n}(b_ip_i - \theta_i k_i) = \prod_{i=1}^{n}(\theta_i \overline{\theta_{*\sigma(i)}}zh_i) = \prod_{i=1}^{n}(\theta_i \overline{\theta_{*\sigma(i)}}) \prod_{i=1}^{n}h_i.$$

Note that $\prod_{i=1}^{n}(\theta_i \overline{\theta_{*\sigma(i)}}) = 1$. We have

$$\prod_{i=1}^{n}(b_ip_i - \theta_i k_i) = \overline{\theta^n} \prod_{i=1}^{n}h_i.$$
Note that the left side of the above equation belongs to \(zH^2 \) and the right side of the above equation belongs to \(zH^2 \). Therefore

\[
\prod_{i=1}^{n} (b_i p_i - \theta_i k_i) = 0.
\]

That is, \(b_i p_i - \theta_i k_i = 0 \) for some \(i \geq 1 \). Since the inner part of \(b_i \) and \(\theta_i \) are comprime, we have \(p_i \in \theta_i H^2 \) which is a contradiction. This completes the proof. \(\square \)

Let

\[
J(a_1, \ldots, a_n) = H_{a_n(1)}^* H_{a_n(2)}^* \cdots H_{a_n(2k-1)}^* H_{a_n(2k)}^*
\]

if \(n = 2k \) is even and

\[
J(a_1, \ldots, a_n) = H_{a_n(1)}^* H_{a_n(2)}^* \cdots H_{a_n(2k)}^* H_{a_n(2k+1)}^*
\]

if \(n = 2k + 1 \) is odd.

The following is the proof of Theorem [2.1]

Proof. We will prove a slightly stronger version of Theorem [2.1] Let \(C \) be any bounded linear operator with range in \(H^2 \) and \(D \) be any bounded linear operator with range in \(L^2 \ominus H^2 \). We will show that there exists a permutation \(\sigma \in S_n \) such that the kernel of \(H(a_{\sigma(1)} \cdots, a_{\sigma(n)})C \) is equal to the kernel of \(H_{a_{\sigma(n)}} D \), and similarly there exists a permutation \(\sigma \in S_n \) such that the kernel of \(J(a_{\sigma(1)}, \cdots, a_{\sigma(n)})D \) is equal to the kernel of \(H_{a_{\sigma(n)}} D \). We prove the result by induction on \(n \). By Lemma [2.2] it is true for \(n = 2 \). Assume it is true for \(n = 2k \). For each \(i = 1, \ldots, 2k \), let \(\sigma_i \) be a permutation of \(2k \) integers \(\{1, 2, \ldots, i - 1, i + 1, \ldots, 2k + 1\} \), such that

\[
\text{Ker}[J(a_{\sigma_i(1)}, a_{\sigma_i(2)}, \ldots, a_{\sigma_i(i-1)}, a_{\sigma_i(i+1)}, \ldots, a_{\sigma_i(2k)}, a_{\sigma_i(2k+1)})H_{a_i} C] = \text{Ker}[H_{a_{\sigma_i(1)}(2k+1)}^* H_{a_i} C],
\]

and similarly let \(\sigma_{2k+1} \) be a permutation of \(2k \) integers \(\{1, 2, \ldots, 2k \} \) such that

\[
\text{Ker}[J(a_{\sigma_{2k+1}(1)}, a_{\sigma_{2k+1}(2)}, \ldots, a_{\sigma_{2k+1}(2k)})H_{a_{2k+1}} C] = \text{Ker}[H_{a_{\sigma_{2k+1}(1)}(2k+1)}^* H_{a_{2k+1}} C].
\]

Let \(\delta_i = \sigma_i(2k+1) \) for \(i = 1, \ldots, 2k \) and \(\delta_{2k+1} = \sigma_{2k+1}(2k) \). We claim that there exists an \(i, 1 \leq i \leq 2k + 1 \), such that

\[
\text{Ker}[H_{a_{\delta_i}}^* H_{a_i} C] = \text{Ker}[H_{a_i} C].
\]

We first show that there exists a subset \(S = \{a_i, i = 1, 2, \ldots, m\} \) of \(\{1, \ldots, 2k + 1\} \) such that the set of all pairs of integers of the form \(\{(\delta_i, i), i = 1, \ldots, 2k + 1\} \) contains a subset of pairs of integers of the form \(\{(a_i, \beta_i) : a_i, \beta_i \in S, i = 1, \ldots, m\} \) and \(a_i \neq a_j, \beta_i \neq \beta_j \) for \(i \neq j \).

Let \(S_1 \) be the set of all distinct members of \(\{a_i, i = 1, \ldots, 2k + 1\} \). Since \(\delta_i \neq i, \) \(S_1 \) contains at least two integers. Without loss of generality, let \(S_1 = \{\delta_i, i = 1, \ldots, m_1\} \). It is easy to see that the set of all pairs of integers of the form \(\{(\delta_i, i), i = 1, \ldots, 2k + 1\} \) contains a subset of pairs of integers of the form \(\{(a_i, \delta_i) : a_i \in S_1, i = 1, \ldots, m_1\} \). If \(a_i \neq a_j \) for all \(i \neq j \), we are done. Otherwise let \(S_2 \) be the set of all distinct members of \(\{a_i, i = 1, \ldots, m_1\} \) and repeat the argument as above. It is easy to see that continuing this process will yield the desired set \(S \).
Let \(\beta \) denote the permutation of \(m \) integers in \(S \) which maps \(\alpha_i \) to \(\beta_i \) for \(i = 1, \cdots, m \). Without loss of generality, assume \(\beta \) is a cycle (otherwise take any cycle of \(\beta \)). That is, \(\beta(\alpha_i) = \beta_i = \alpha_{i+1} \) for \(i = 1, \cdots, m-1 \) and \(\beta(\alpha_m) = \beta_m = \alpha_1 \). Now again by Lemma 2.2 there exists an \(i \) such that

\[
Ker[H_{a_{\beta(i)}}^* H_{a_{\beta(i)}}] = Ker[H_{a_{\beta(i)}}^* C].
\]

This proves that there exists a permutation \(\sigma \in S_{2k+1} \) such that the kernel of \(H(a_{\sigma(1)}, \cdots, a_{\sigma(2k+1)})C \) is equal to the kernel of \(H_{a_{\sigma^{(2k+1)}}}^* H_{a_{\sigma^{(2k+1)}}} \). Similarly we can show that there exists a permutation \(\sigma \in S_{2k+1} \) such that the kernel of

\[
J(a_{\sigma(1)}, \cdots, a_{\sigma(2k+1)})D
\]

is equal to the kernel of \(H_{a_{\sigma^{(2k+1)}}}^* D \). This completes the proof. \(\Box \)

Next we give the proof of Corollary 1.2.

Proof. First we prove the corollary for the case \(n = 2 \). By Theorem 1.1 with \(n = 2 \), either the kernel of \(H_{a_1}^* H_{a_2} \) is equal to the kernel of \(H_{a_2} \) or the kernel of \(H_{a_2}^* H_{a_1} \) is equal to the kernel of \(H_{a_1} \). By the fact that an operator is of finite rank if and only if its kernel is of finite codimension, and in this case the rank is equal to the codimension of its kernel, we have that either the rank of \(H_{a_1}^* H_{a_2} \) is equal to the rank of \(H_{a_2} \), or the rank of \(H_{a_2}^* H_{a_1} \) is equal to the rank of \(H_{a_1} \). But \(H_{a_1}^* H_{a_2} \) is the adjoint of \(H_{a_2}^* H_{a_1} \). Thus the rank of \(H_{a_1}^* H_{a_2} \) is equal to the minimum of the rank of \(H_{a_1} \) and the rank of \(H_{a_2} \).

For the general case, by the proof of Theorem 1.1 there exists a permutation \(\sigma \in S_{n-1} \) such that the rank of \(H(a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_n) \) is equal to the rank of \(H_{a_{\sigma(n)}}^* H_{a_{\sigma(n)}} \). By the previous analysis, the rank of \(H_{a_{\sigma(n)}}^* H_{a_{\sigma(n)}} \) is equal to the minimum of the rank of \(H_{a_{\sigma(n-1)}} \) and the rank of \(H_{a_n} \). This proves that the left side of the rank formula in Corollary 1.2 is larger than or equal to the right side. It is obvious that the left side is less than or equal to the right side. This completes the proof. \(\Box \)

3. Examples

The following simple examples show that our results are the best possible.

Example 3.1. Let \(\{k_i\}_{i \geq 1} \) be the Fibonacci sequence, i.e., \(k_1 = 1, k_2 = 2 \) and \(k_i = k_{i-1} + k_{i-2} \) for \(i \geq 3 \). Let \(a_i = z^{k_i} \) for \(i = 1, \cdots, n \). Note that \(H_{a_1}^* H_{a_2} = 0 \) for all \(i, j \) and \(k \) such that \(i + j \leq k \). Therefore \(H(a_{\sigma(n)}, a_{\sigma(n-1)}, \cdots, a_{\sigma(2)}, a_1) \) is zero for all permutations \(\sigma \) of \(\{n, n-1, \cdots, 2\} \) except for the identity permutation (i.e., \(\sigma(i) = i \) for \(i = n, n-1, \cdots, 2 \)). This shows that the results in Corollary 1.2 and Corollary 1.3 are sharp. That is, if we replace the set \(S_{n-1} \) by any proper subset of \(S_{n-1} \), both Corollary 1.2 and Corollary 1.3 are false.

Example 3.2. Notation is the same as in Example 3.1. It is clear that the kernel of \(H(a_n, a_{n-1}, \cdots, a_1) \) is equal to the kernel of \(H_{a_1} \). We claim that the kernel of \(H(a_{\sigma(n)}, a_{\sigma(n-1)}, \cdots, a_{\sigma(1)}) \) is not equal to the kernel of \(H_{a_{\sigma(n)}} \) for all non-trivial permutations of \(\{n, n-1 \cdots, 2, 1\} \). This shows that the result in Theorem 1.1 is also sharp. To see this, note that \(H(a_{\sigma(n)}, a_{\sigma(n-1)}, \cdots, a_{\sigma(1)}) \) is zero unless \(\sigma(n) = n \) or \(\sigma(1) = n \).

If \(\sigma(1) = n \), it is easy to see that the kernel of \(H(a_{\sigma(n)}, a_{\sigma(n-1)} \cdots, a_{\sigma(1)}) \) is not equal to the kernel of \(H_{a_n} \), since

\[
H(a_{\sigma(n)}, a_{\sigma(n-1)} \cdots, a_{\sigma(2)}, a_n) 1 = 0, \quad H_{a_n} 1 = z^{k_n} \neq 0.
\]
Therefore $\sigma(n) = n$. Similar arguments show that in order for the kernel of $H(a_{\sigma(n)}, a_{\sigma(n-1)}, \cdots, a_{\sigma(1)})$ to equal the kernel of $H_{a_{\sigma(1)}}$, we must have $\sigma(i) = i$ for $i = n, n-1, \cdots, 2, 1$.

References

Department of Mathematics, California Polytechnic State University, San Luis Obispo, California 93407

E-mail address: cgualpoly.edu