AN EQUIVALENT DEFINITION OF FUNCTIONS OF THE FIRST BAIRE CLASS

PENG-YEE LEE, WEE-KEE TANG, AND DONGSHENG ZHAO

(Communicated by David Preiss)

Abstract. An equivalent definition of functions of the first Baire class in terms of \(\varepsilon - \delta \) is given.

Let \(X \) and \(Y \) be metric spaces. A function \(f : X \to Y \) is said to be of the first Baire class, or Baire-1, if \(\{ x : f(x) \in G \} \in \mathcal{F}_\sigma \) for every open set \(G \subset Y \). The study of functions of the first Baire class dates back to 1899 in Baire’s paper [1]. We refer the reader to \([2] \) and \([3] \) for some classical results on this class of functions.

Suppose \(X \) and \(Y \) are complete separable metric spaces. It is well known that a function \(f : X \to Y \) is Baire-1 if and only if the restriction \(f |_p \) of \(f \) to any non-empty closed subset \(P \) of \(X \) has a point of continuity in \(P \). (See, for instance, \([2] \) and \([3] \).) It is easy to see that a pointwise limit of a sequence of continuous functions from \(X \) to \(Y \) is Baire-1. The converse is not true. For instance, the function \(\chi_{[0,1]} : \mathbb{R} \to \{0,1\} \) is Baire-1 but not a pointwise limit of a sequence of continuous functions. However, if \(Y \) is a separable Banach space, then every function \(f : X \to Y \) that is Baire-1 is also a pointwise limit of a sequence of continuous functions.

These classifications do not involve \(\varepsilon - \delta \) as in the case of the definition of continuity of a function. In this note, we give an equivalent condition for a function to be of Baire class one in terms of \(\varepsilon - \delta \).

The elementary notion of continuity has numerous variants. Let \((X,d_X)\) and \((Y,d_Y)\) be complete separable metric spaces. A function \(f : X \to Y \) is continuous if, for each \(\varepsilon > 0 \), \(x \in X \), there exist \(\delta(x) > 0 \) such that
\[
 d_Y (f(x), f(y)) < \varepsilon
\]
whenever
\[
 d_X (x, y) < \delta(x) \quad \text{or} \quad d_X (x, y) < \delta(y).
\]

In this paper, we show that if the connective ‘or’ in (*) were replaced by ‘and’, i.e., if (*) were replaced by
\[
 d_X (x, y) < \min\{\delta(x), \delta(y)\},
\]
then we would obtain a necessary and sufficient condition for a function to be of the first Baire class.

Received by the editors June 2, 1999 and, in revised form, November 18, 1999.

2000 Mathematics Subject Classification. Primary 26A21.

Key words and phrases. Functions of the first Baire class, continuity, metric spaces.

We thank A. B. Aruffo, L. Zajíček and the referee for their comments contributing to the current proof and final statement of Theorem 1.
Theorem 1. Suppose $f : X \to Y$ is a mapping between complete separable metric spaces (X, d_X) and (Y, d_Y). Then the following statements are equivalent.

(1) For any $\varepsilon > 0$, there exists a positive function δ on X such that
$$d_Y(f(x), f(y)) < \varepsilon$$
whenever
$$d_X(x, y) < \min\{\delta(x), \delta(y)\}.$$

(2) The function f is of the first Baire class.

Proof. (1) \Rightarrow (2). Let F be a non-empty closed subset of X. It suffices to show that $f |_F$ has a point of continuity. To this end, we prove that, for some $x \in F$,
$$\omega_f(x, F) = \inf_{h > 0} \sup \{|f(u) - f(v)| : u, v \in N_h(x) \cap F\} = 0,$$
where $N_h(x) = \{u \in X : d_X(u, x) < h\}$.

Suppose, to the contrary,
$$\omega_f(x, F) > 0$$
for each $x \in F$.

Then we have
$$F = \bigcup_{n=1}^{\infty} C_n,$$
where C_n is the closed set $\{x \in F : \omega_f(x, F) \geq \frac{1}{n}\}$. By Baire’s Category Theorem, there exists $n_0 \in \mathbb{N}$ such that C_{n_0} contains a non-empty interior U in F. Write $I = \overline{U} \subseteq C_{n_0}$.

Now let δ be a positive function as stated in (1) that corresponds to $\varepsilon = \frac{1}{n_0}$. Put $F_n = \{x \in I : \delta(x) > \frac{1}{n}\}$. Then we have
$$I = \bigcup_{n=1}^{\infty} F_n.$$

Again by Baire’s Category Theorem, there exists $K \in \mathbb{N}$, such that $\overline{F_K}$ has a non-empty interior in I, i.e., there exist $c \in F_K \cap U$ and $r > 0$, $r < \min\left\{\frac{1}{n_0}, \delta(c)\right\}$ such that
$$N_r(c) \cap I \subseteq \overline{F_K}.$$

The proof will be complete if we have shown that

$$\sup \{|f(u) - f(v)| : u, v \in N_r(c) \cap I\} \leq \frac{2}{3n_0};$$

Indeed, if this is so, then $\omega_f(c, F) \leq \frac{2}{3n_0}$, as $N_r(c) \cap I$ contains a neighbourhood of c in F. This contradicts the fact that $c \in C_{n_0}$. Therefore $\omega_f(x, F) = 0$ for some $x \in F$.

To see (**), let $y \in N_r(c) \cap I \subseteq \overline{F_K}$. Then there exists
$$x \in N_r(c) \cap N_{\delta(y)}(y) \cap F_K.$$

We note that
$$d_X(x, y) < \min\{2r, \delta(y)\} \leq \min\left\{\frac{1}{K}, \delta(y)\right\} \leq \min\{\delta(x), \delta(y)\},$$
and
$$d_X(x, c) < r \leq \min\{\delta(x), \delta(c)\}.$$
Therefore, by our hypothesis,
\[d_Y (f(y), f(c)) \leq d_Y (f(y), f(x)) + d_Y (f(x), f(c)) \leq \frac{1}{6n_0} + \frac{1}{6n_0} = \frac{1}{3n_0}. \]
Consequently,
\[\sup \{ |f(u) - f(v)| : u, v \in N_r(c) \cap F \cap I \} \leq \frac{2}{3n_0}. \]

(2) \Rightarrow (1). Suppose \(f : X \to Y \) is a Baire-1 function between complete separable metric spaces \(X \) and \(Y \). Then \(Y \) is isometric to a subset of a separable Banach space \(Z \). Let \(h : (Y, d_Y) \to (Z, \| \cdot \|_Z) \) be an isometry. Then \(h \circ f : X \to Z \) is a Baire-1 function as well. Since \(Z \) is a Banach space, \(h \circ f \) is a pointwise limit of a sequence of continuous functions \(g_n : X \to Z, n \in \mathbb{N} \).

We show that \(f \) satisfies (1). Let \(\varepsilon > 0 \) and \(x \in X \) be given. For each \(n \in \mathbb{N} \), there exists a function \(\delta_n > 0 \) such that
\[\|g_n(x) - g_n(y)\|_Z < \frac{\varepsilon}{3} \]
whenever \(d_X (x, y) < \delta_n (x) \). There also exists an integer \(n_x \) such that
\[\|g_n(x) - h \circ f (x)\|_Z < \frac{\varepsilon}{3} \]
for all \(n \geq n_x \). Define a positive function \(\delta : X \to \mathbb{R}^+ \) by
\[\delta (x) = \min_{1 \leq n \leq n_x} \delta_n (x) \text{ for each } x \in X. \]
Let \(x, y \in X \) such that
\[d_X (x, y) < \min \{ \delta (x), \delta (y) \}. \]
Without loss of generality, we assume that \(n_x \leq n_y \); then
\[\|h \circ f (x) - h \circ f (y)\|_Z < \|h \circ f (x) - g_{n_y} (x)\|_Z + \|g_{n_y} (x) - g_{n_y} (y)\|_Z + \|g_{n_y} (y) - h \circ f (y)\|_Z \]
\[< \frac{\varepsilon}{3} + \|g_{n_y} (x) - g_{n_y} (y)\|_Z + \frac{\varepsilon}{3}. \]
But \(\|g_{n_y} (x) - g_{n_y} (y)\|_Z < \varepsilon/3 \) as \(d_X (x, y) \leq \delta (y) \leq \delta_{n_y} (y) \). Finally, since \(h \) is an isometry, \(d_Y (f(x), f(y)) = \|h \circ f (x) - h \circ f (y)\|_Z < \varepsilon. \)

REFERENCES

DIVISION OF MATHEMATICS, NATIONAL INSTITUTE OF EDUCATION, NANYANG TECHNOLOGICAL UNIVERSITY, 469, BUKIT TIMAH ROAD, SINGAPORE 259756
E-mail address: pylee@nie.edu.sg

DIVISION OF MATHEMATICS, NATIONAL INSTITUTE OF EDUCATION, NANYANG TECHNOLOGICAL UNIVERSITY, 469, BUKIT TIMAH ROAD, SINGAPORE 259756
E-mail address: wktsang@nie.edu.sg

DIVISION OF MATHEMATICS, NATIONAL INSTITUTE OF EDUCATION, NANYANG TECHNOLOGICAL UNIVERSITY, 469, BUKIT TIMAH ROAD, SINGAPORE 259756
E-mail address: dszhao@nie.edu.sg