A FORMULA FOR k-HYPONORMALITY OF BACKSTEP EXTENSIONS OF SUBNORMAL WEIGHTED SHIFTS

IL BONG JUNG AND CHUNJI LI

(Communicated by David R. Larson)

ABSTRACT. Let $\alpha : \alpha_0, \alpha_1, \cdots$ be a weight sequence of positive real numbers and let W_α be a subnormal weighted shift with a weight sequence α. Consider an extended weight sequence $\alpha(x) : x, \alpha_0, \alpha_1, \cdots$ with $0 < x \leq \alpha_0$ and let $HE(\alpha, k) := \{ x > 0 : W_\alpha(x) \text{ is } k\text{-hyponormal} \}$ for $k \in \mathbb{N} \cup \{\infty\}$, where \mathbb{N} is the set of natural numbers. We obtain a formula to find the interval $HE(\alpha, k) \setminus HE(\alpha, k + 1)$, which provides several examples to distinguish the classes of k-hyponormal operators from one another.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H}. For $A, B \in \mathcal{L}(\mathcal{H})$, let $[A, B] = AB - BA$. We say that an n-tuple $T = (T_1, \cdots, T_n)$ of operators in $\mathcal{L}(\mathcal{H})$ is hyponormal if the operator matrix $([T_j^* T_i])_{i,j=1}^n$ is positive on the direct sum of n copies of \mathcal{H}. For arbitrary positive integer k, $T \in \mathcal{L}(\mathcal{H})$ is k-hyponormal if (I, T, \cdots, T^k) is hyponormal. It is well known that T is subnormal if and only if T is 1-hyponormal (cf. [Br], [Hal]).

Let $\alpha : \alpha_0, \alpha_1, \cdots$ be a sequence of positive real numbers. Let $x > 0$ and let $\alpha(x) : x, \alpha_0, \alpha_1, \cdots$ be an augmented weight sequence. For $k \in \mathbb{N} \cup \{\infty\}$, we write $HE(\alpha, k)$ for the set of all positive real variable x such that $W_\alpha(x)$ is k-hyponormal (cf. [Ch1, Ch2]). It follows from [Ch1] that if $\alpha(x) : x, \sqrt{\frac{3}{2}}, \sqrt{\frac{4}{3}}, \sqrt{\frac{5}{4}}, \cdots$, then there exists a sequence $\{\lambda_k\}_{k=1}^\infty$ of positive numbers with $\lim_{k \to \infty} \lambda_k = \sqrt{\frac{3}{2}}$ such that $\lambda_k > \lambda_{k+1}$ ($k \geq 1$) and $HE(\alpha, k) = (0, \lambda_k]$, where $\lambda_1 = \sqrt{\frac{3}{2}}, \lambda_2 = \sqrt{\frac{3}{2}}, \lambda_3 = \sqrt{\frac{5}{3}}, \lambda_4 = \sqrt{\frac{5}{4}}, \cdots$ and $HE(\alpha, \infty) = (0, \sqrt{\frac{3}{2}}]$, which gives an example that distinguishes the classes of k-hyponormal operators from one another. In this paper, we obtain a formula that captures such examples.

Received by the editors January 22, 1999 and, in revised form, December 7, 1999.
2000 Mathematics Subject Classification. Primary 47B37.
Key words and phrases. Subnormal weighted shifts, k-hyponormal weighted shifts.

The first author was partially supported by KOSEF grant 971-0102-006-2 and the Korea Research Foundation made in the program year of 1998, 1998-015-D00019. The second author was partially supported by TGRC-KOSEF.

©2000 American Mathematical Society
Note that for a unilateral weighted shift W_α with $\alpha_n = \alpha_{n+1}$ for some $n \in \mathbb{N} \cup \{0\}$, 2-hyponormality immediately forces the weight sequence α to be flat, that is, $\alpha_1 = \alpha_2 = \cdots$ (cf. [Cu1]). In [Sta], J. Stampfli had previously established this for subnormal shifts, so if the subnormal weighted shift is not flat, its weight sequence α satisfies $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \alpha_n < \cdots$. Throughout this paper we may assume that the subnormal weighted shift W_α satisfies $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \alpha_n < \cdots$ to escape the trivial case.

A weighted shift W_α is said to be recursively generated if there exist an integer $r \geq 1$ and a vector $\psi = (\psi_0, \cdots, \psi_{r-1}) \in \mathbb{C}^r$ such that $\gamma_n = \psi_{r-1} \gamma_{n-1} + \cdots + \psi_0 \gamma_{n-r}$ ($n \geq r$), where γ_n ($n \geq 0$) is the moment of W_α, i.e., $\gamma_0 = 1$, $\gamma_n := \alpha_0^2 \cdots \alpha_{n-1}^2$ ($n \geq 1$), equivalently,

\[
\alpha_n^2 = \psi_{r-1} + \frac{\psi_{r-2}}{\alpha_{n-1}^2} + \cdots + \frac{\psi_0}{\alpha_{n-r+1}^2} \quad (n \geq r).
\]

The smallest such integer r is called the rank of γ. A weighted shift W_α is non-recursively generated if it is not recursively generated. Note that a subnormal weighted shift is recursively generated if and only if the corresponding probability measure has finite support (cf. [ShT], p. 6) or [CuF1].

For the moment sequence $(\gamma_n)_{n=0}^{\infty}$ of W_α, we denote

\[
A(i,j) := \begin{bmatrix}
\gamma_i & \gamma_{i+1} & \cdots & \gamma_{i+j} \\
\gamma_{i+1} & \gamma_{i+2} & \cdots & \gamma_{i+j+1} \\
& \ddots & \ddots & \ddots \\
\gamma_{i+j} & \gamma_{i+j+1} & \cdots & \gamma_{i+2j}
\end{bmatrix}
\]

If a subnormal weighted shift W_α is recursively generated and rank$\gamma = r$, then $\det A(i, r-1) \neq 0$ and $\det A(i, j) = 0$ for any $i \geq 1, j \geq r$. Note that if a subnormal weighted shift W_α is non-recursively generated, then $\det A(i, j) > 0$ for any positive integers i and j (cf. [Cu3]).

2. A FORMULA FOR k-HYPONORMALITY

2.1. Non-recursively generated type. Let $\alpha : \alpha_0 < \alpha_1 < \alpha_2 < \cdots < \alpha_n < \cdots$ be a sequence of positive real numbers. Let $x > 0$ and let $\alpha(x) : x, \alpha_0, \alpha_1, \cdots$ be an augmented weight sequence. Assume that W_α is a non-recursively generated subnormal weighted shift. For brevity, let us put $t := \frac{1}{2x}$. Then it follows from [Cu1] Theorem 4] that $W_{\alpha(x)}$ is k-hyponormal if and only if

\[
D_k(t) := \begin{bmatrix}
t & \gamma_0 & \gamma_1 & \cdots & \gamma_{k-1} \\
\gamma_0 & \gamma_1 & \gamma_2 & \cdots & \gamma_k \\
& \ddots & \ddots & \ddots & \ddots \\
\gamma_{k-1} & \gamma_k & \gamma_{k+1} & \cdots & \gamma_{2k-1}
\end{bmatrix}
\]

is non-negative, where $\gamma_0 := 1, \gamma_{n+1} := \alpha_n^2 \gamma_n$ ($n \geq 0$). Note that $d_k(t) := \det D_k(t)$ is a polynomial in t of degree 1. Since W_α is non-recursively generated subnormal, the coefficient of t in $d_k(t)$, $\det A(1, k-1)$, is positive. Hence $d_k(t)$ has a unique zero. We write $t_k := t_k(\alpha)$ for the unique zero of $d_k(t)$.
Theorem 2.1. Let \(\alpha : \alpha_0 < \alpha_1 < \alpha_2 < \cdots < \alpha_n < \cdots \) be a sequence of positive real numbers. Assume that \(W_\alpha \) is a non-recursively generated subnormal weighted shift. Let \(x > 0 \) and let \(\alpha(x) : x, \alpha_0, \alpha_1, \cdots \) be the associated augmented weight sequence. Let \(t_k := t_k(\alpha) \) be the unique zero of \(\det D_k(t) \), where \(t := \frac{1}{\alpha} \). Then

\[
(2.1) \quad t_{k+1}(\alpha) = t_k(\alpha) + \frac{[\det A(0, k)]^2}{\det A(1, k-1) \cdot \det A(1, k)}
\]

for all \(k = 1, 2, \cdots \).

For an \(n \times n \) matrix \(A = [a_{ij}]_{1 \leq i,j \leq n} \), we write

\[
A \begin{pmatrix} i_1 & i_2 & \cdots & i_p \end{pmatrix} = \begin{pmatrix} a_{i_1, k_1} & a_{i_1, k_2} & \cdots & a_{i_1, k_p} \\ a_{i_2, k_1} & a_{i_2, k_2} & \cdots & a_{i_2, k_p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_p, k_1} & a_{i_p, k_2} & \cdots & a_{i_p, k_p} \end{pmatrix}
\]

for a minor of \(A \) of order \(p \). We recall a fundamental result from [Gan, p. 22] as follows.

Lemma 2.2. Let \(A = [a_{ij}]_{1 \leq i,j \leq n} \) be an \(n \times n \) matrix. Then

\[
\det A = \sum_{1 \leq i_1 < i_2 < \cdots < i_p \leq n} A \begin{pmatrix} k_1 & k_2 & \cdots & k_p \end{pmatrix} \begin{pmatrix} i_1 & i_2 & \cdots & i_p \end{pmatrix} (-1)^{\sum_{e=1}^p i_e + \sum_{e=1}^p k_e} \cdot A \begin{pmatrix} k'_1 & k'_2 & \cdots & k'_{n-p} \end{pmatrix} \begin{pmatrix} i'_1 & i'_2 & \cdots & i'_{n-p} \end{pmatrix}
\]

(2.2)

where \(i_1 < i_2 < \cdots < i_p \) and \(i'_1 < i'_2 < \cdots < i'_{n-p} \) form a complete system of indices \(1, 2, \cdots, n \), as do \(k_1 < k_2 < \cdots < k_p \) and \(k'_1 < k'_2 < \cdots < k'_{n-p} \).

Proof of Theorem 2.1. Let \(M^{(i)}_k \) be the \(k \times k \) matrix obtained by removing the \((i+1) \)-th column from the matrix

\[
\begin{bmatrix} \gamma_0 & \gamma_1 & \gamma_2 & \cdots & \gamma_k \\ \gamma_1 & \gamma_2 & \gamma_3 & \cdots & \gamma_{k+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma_{k-1} & \gamma_k & \gamma_{k+1} & \cdots & \gamma_{2k-1} \end{bmatrix}
\]

and let \(d^{(i)}_k := \det M^{(i)}_k \) for \(i = 0, 1, 2, \cdots, k \). Let us expand \(d_k(t) = \det D_k(t) \) by the first row to obtain

\[
d_k(t) = td^{(0)}_k - \gamma_0 d^{(1)}_k + \gamma_1 d^{(2)}_k - \cdots + (-1)^k \gamma_{k-1} d^{(k)}_k.
\]

Let \(t_k := t_k(\alpha) \) be the zero of \(d_k(t) \). Since \(d^{(0)}_k > 0 \) for \(k = 1, 2, \cdots, \), we have

\[
t_k = \frac{\gamma_0 d^{(1)}_k}{d^{(0)}_k} - \frac{\gamma_1 d^{(2)}_k}{d^{(0)}_k} + \cdots + (-1)^{k+1} \frac{\gamma_{k-1} d^{(k)}_k}{d^{(0)}_k} \quad (k \in \mathbb{N}).
\]
Hence
\[d_k^{(0)} d_{k+1}^{(0)} (t_{k+1} - t_k) = \gamma_0 (d_k^{(0)} d_{k+1}^{(1)} - d_k^{(1)} d_{k+1}^{(0)}) - \gamma_1 (d_k^{(0)} d_{k+1}^{(2)} - d_k^{(2)} d_{k+1}^{(0)}) + \cdots + (-1)^{k-1} \gamma_{k-1} (d_k^{(0)} d_{k+1}^{(k-1)} - d_k^{(k-1)} d_{k+1}^{(0)}) + (-1)^k \gamma_k d_k^{(0)} d_{k+1}^{(k+1)}. \]

(2.3)

We first denote
\[\overline{A}^{(i)}_{(2k+1) \times (2k+1)} := \begin{bmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_{i+1} & \cdots & \gamma_k & \gamma_{k+1} \\ \gamma_1 & \gamma_2 & \cdots & \gamma_{i+2} & \cdots & \gamma_{k+1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \gamma_k & \gamma_{k+1} & \cdots & \gamma_{i+k} & \cdots & \gamma_{2k} & \gamma_{2k+1} \\ \gamma_{i+1} \\ \gamma_{i+2} \\ \vdots \\ \gamma_{i+k} \\ O_{k \times i} & \gamma_{i+1} & \gamma_{i+2} & \gamma_{k+1} \end{bmatrix}, \]

where \(O_{i \times j} \) is the \(i \times j \) zero matrix and \(B_{k+1}^{(i+1)} \) is the \(k \times k \) submatrix obtained by removing the \((i+1)\)-column from the matrix

\[\begin{bmatrix} \gamma_1 & \cdots & \gamma_{k+1} \\ \vdots & \ddots & \vdots \\ \gamma_k & \cdots & \gamma_{2k} \end{bmatrix}, \]

\((i = 0, 1, \ldots, k)\). Let \(v(i, j) = [\gamma_i, \gamma_{i+1}, \ldots, \gamma_{i+j}]^T \). Since the \(k+2 \) columns of the submatrix

\[\begin{bmatrix} \gamma_0 & \cdots & \gamma_{k-1} & \gamma_k & \gamma_{k+1} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \gamma_k & \cdots & \gamma_{2k} & \gamma_{2k+1} \end{bmatrix}, \]

in the upper half submatrix of the matrix \(\overline{A}^{(i)}_{(2k+1) \times (2k+1)} \) are linearly dependent, there exist real numbers \(\phi_i, \ i = 0, 1, \ldots, k \), such that \(v(k+1, k) = \phi_0 v(0, k) + \cdots + \phi_k v(k, k) \), which proves easily that the columns of \(\overline{A}^{(i)}_{(2k+1) \times (2k+1)} \) are linearly dependent. Hence

\[\det \overline{A}^{(i)}_{(2k+1) \times (2k+1)} = 0 \quad \text{for} \quad i = 0, 1, \ldots, k. \]

(2.4)
For brevity we write $\tilde{A} := A^{(i)}_{(2k+1) \times (2k+1)}$. Then, applying Lemma 2.2 (using \tilde{A} and the last k rows of A), we have that

$$\det \tilde{A} = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq 2k+1} A^{(k+2 \cdots 2k+1)}_{i_1 \cdots i_k} \cdot (-1)^{\sum_{v=1}^{k} i_v + \sum_{v=k+1}^{2k+1} v} \cdot \tilde{A}^{(1 \cdots k+1)}_{i_1' \cdots i_{k+1}'}$$

where $i_1 < i_2 < \cdots < i_k$ and $i_1' < i_2' < \cdots < i_{k+1}'$

form a complete system of indices $1, 2, \cdots, 2k+1$.

$$\begin{aligned}
&= (-1)^{1+\sum_{v=k+2}^{2k+1} v + \sum_{v=k+2}^{2k+1} v} \cdot d_k^{(i+1)} d_{k+1}^{(0)} \\
&\quad + (-1)^{k+2+\sum_{v=k+2}^{2k+1} v + \sum_{v=k+2}^{2k+1} v} \cdot \det B_{k+1}^{(i+1)} \cdot \det A(0, k) \\
&\quad + (-1)^{(i+2) + \sum_{v=k+2}^{2k+1} v + \sum_{v=k+2}^{2k+1} v} \cdot d_k^{(i+1)} d_{k+1}^{(0)} \\
&= d_k^{(i+1)} d_{k+1}^{(0)} + \det B_{k+1}^{(i+1)} \cdot \det A(0, k) - d_k^{(i+1)} d_{k+1}^{(0)}.
\end{aligned}$$

Hence by (2.4) we have

$$\text{(2.5)} \quad d_k^{(i)} d_{k+1}^{(0)} d_k^{(i+1)} d_{k+1}^{(0)} = \det A(0, k) \cdot \det B_{k+1}^{(i+1)} \quad (i = 0, \cdots, k-1).$$

Since $d_{k+1}^{(k+1)} = \det A(0, k)$, by (2.3) and (2.5) we have

$$d_k^{(0)} d_{k+1}^{(0)} (t_{k+1} - t_k) = [\det A(0, k)] \cdot \sum_{i=0}^{k-1} (-1)^i \gamma_i \det B_{k+1}^{(i+1)} + (-1)^k \gamma_k d_k^{(0)}$$

which proves the theorem.

Since $\det A(1, k-1) > 0$ for $k = 1, 2, \cdots$, $d_k(t) \geq 0 \iff t \geq t_k(\alpha)$ for all $k = 1, 2, \cdots$. Since $\det A(0, k) > 0$ for $k = 1, 2, \cdots$ and $t_1(\alpha) = \frac{\alpha^2}{\gamma_1}$, by (2.1), $0 < t_1(\alpha) < t_2(\alpha) < \cdots$. Hence we have the following corollary.

Corollary 2.3. Let $\alpha : \alpha_0 < \alpha_1 < \alpha_2 < \cdots < \alpha_n < \cdots$ be a sequence of positive real numbers. Let $x > 0$ and let $\alpha(x) : x, \alpha_0, \alpha_1, \cdots$ be the associated augmented weight sequence. Assume that W_α is a non-recursively subnormal weighted shift.
Let \(t_k := t_k(\alpha) \) be the unique zero of \(\det D_k(t) \), where \(t := \frac{1}{t_k} \). Then for any \(k \in \mathbb{N} \),
\[
(2.6) \quad HE(\alpha, k) \setminus HE(\alpha, k + 1) = \left(\frac{1}{\sqrt{t_{k+1}(\alpha)}}, \frac{1}{\sqrt{t_k(\alpha)}} \right].
\]
In particular, \(HE(\alpha, \infty) = \bigcap_{k=1}^{\infty} (0, \frac{1}{\sqrt{t_k(\alpha)}}] \).

2.2. Recursively generated type. Let \(W_\alpha \) be a recursively generated subnormal weighted shift and let \(\text{rank} \gamma = r \). Then \(\det A(1, i) > 0 \) for \(i = 1, \ldots, r-1 \) and \(\det A(1, i) = 0 \) for \(i \geq r \). According to the proof of Theorem 2.1,
\[
(2.7) \quad t_{k+1}(\alpha) = t_k(\alpha) + \frac{[\det A(0, k)]^2}{\det A(1, k-1) \cdot \det A(1, k)}
\]
for all \(k = 1, 2, \ldots, r-1 \). Since \(\text{rank} D_{k+1}(t) = \text{rank} D_k(t) \) \((k \geq r) \) by [CuF1], we have that \(D_{k+1}(t) \geq 0 \iff D_k(t) \geq 0 \) \((k \geq r) \). So \(t_{k+1}(\alpha) = t_k(\alpha) \) for all \(k \geq r \). Hence we have the following proposition.

Proposition 2.4. Assume \(W_\alpha \) is a recursively generated subnormal weighted shift and let \(\text{rank} \gamma = r \). Let \(x > 0 \) and let \(\alpha(x) : x, \alpha_0, \alpha_1, \ldots \) be an augmented weight sequence. Let \(t_k := t_k(\alpha) \) be the unique zero of \(\det D_k(t) \), where \(t := \frac{1}{t_k} \). Then we have
(i) for \(p \leq r-1 \),
\[
HE(\alpha, p) \setminus HE(\alpha, p + 1) = \left(\frac{1}{\sqrt{t_{p+1}(\alpha)}}, \frac{1}{\sqrt{t_p(\alpha)}} \right],
\]
(ii) for any \(p \geq r \), \(HE(\alpha, p) = HE(\alpha, \infty) \).

3. Examples

3.1. Non-recursively generated type. Given any non-recursively generated subnormal weighted shift \(W_\alpha \), by Theorem 2.1 and Corollary 2.3 the one step extension of \(W_\alpha \) provides several examples to distinguish the classes of \(k \)-hyponormal operators. For example, we may recapture Curto’s example [Cu1] Proposition 7] as follows.

Example 3.1. Let \(\alpha_n := \sqrt{\frac{4 + \sqrt{n+3}}{n+3}} \) \((n \geq 0) \). It follows from [Cu1] (or Example 3.2) that \(W_{\alpha_n(x)} \) is subnormal if and only if \(0 < x \leq \sqrt{\frac{2}{3}} \). Since the support of Berger measure corresponded by \(W_\alpha \) is not finite, \(W_\alpha \) is non-recursively generated. Applying Theorem 2.1, we have \(t_1 = \frac{2}{5}, t_2 = \frac{16}{25}, t_3 = \frac{16}{25}, t_4 = \frac{48}{25}, t_5 = \frac{48}{25}, \ldots \). Hence \(HE(\alpha, k) \setminus HE(\alpha, k + 1) = (\lambda_{k+1}, \lambda_k) \), where \(\lambda_1 = \sqrt{\frac{2}{3}}, \lambda_2 = \frac{4}{5}, \lambda_3 = \sqrt{\frac{2}{5}}, \lambda_4 = \sqrt{\frac{2}{5}}, \lambda_5 = \sqrt{\frac{48}{25}}, \ldots \), and \(HE(\alpha, \infty) = (0, \sqrt{\frac{2}{3}}] \).

Let \(W_\alpha \) be a weighted shift whose restriction to \(\sqrt{\{e_1, e_2, \ldots \}} \) is subnormal, with associated Berger measure \(\mu \). Then it follows from [Cu1] Proposition 8] that \(W_\alpha \) is subnormal iff
\[
(3.1) \quad \frac{1}{t} \in L^1(\mu) \quad \text{and} \quad \alpha_0^2 \cdot \left\| \frac{1}{t} \right\|_{L^1(\mu)} \leq 1.
\]
In particular, \(W_\alpha \) is never subnormal when \(\mu(\{0\}) > 0 \). The following example is useful when considering the behavior of Bergman shift extensions.
Example 3.2. Let
\[\alpha(x_1, \ldots, x_n) = x_n, \ldots, x_1, \sqrt{m \over m+1}, \ldots, \sqrt{m+k-1 \over m+k}, \ldots. \]

(i) If \(1 \leq n \leq m-1\), then
\[HE(\alpha, \infty) = \{(x_1, \ldots, x_n) | W_{\alpha(x_1, \ldots, x_n)} \text{ is subnormal}\} \]
\[= \left\{ \left(\sqrt{m-1 \over m}, \sqrt{m-2 \over m-1}, \ldots, \sqrt{m-n+1 \over m-n+2}, x_n \right) \mid 0 < x_n \leq \sqrt{m-n \over m-n+1} \right\}. \]

(ii) If \(n \geq m\), then \(HE(\alpha, \infty) = \emptyset\).

Proof. (i) First we will find the range of \(x_1\) needed for the subnormality of \(W_{\alpha(x_1)}\). Let \(\mu_1\) be the probability measure corresponding to the subnormal weighted shift with the weights \(\sqrt{m \over m+1}, \sqrt{m+1 \over m+2}, \ldots, \sqrt{m+k-1 \over m+k}, \ldots\). Then
\[\int_{[0,1]} t^k d\mu_1(t) = \frac{m}{m+1} \frac{m+k-1}{m+k} = \frac{m}{m+k} = \int_0^1 mt^{k+m-1} dt. \]
So \(d\mu_1 = mt^{m-1} dt\). Since \(\|1/t\|^1_{L^1(\mu_1)} = \frac{m}{m-1}\), by (3.1) we have \(x_1 \leq \sqrt{m-1 \over m}\). Let \(\mu_2\) be the probability measure corresponding to the weighted shift with the weights \(x_1, \sqrt{m \over m+1}, \ldots, \sqrt{m+k-1 \over m+k}, \ldots\). Since
\[x_1^2 \cdot \frac{m}{m+1} \ldots \frac{m+k-2}{m+k-1} = \int_0^1 t^k d\mu_2, \]
using a method similar to that described above, we have \(d\mu_2 = x_1^2 mt^{m-2} dt\). Furthermore, since \(\mu_2[0,1] = 1\), we have \(x_1 = \sqrt{m-1 \over m}\). Hence \(d\mu_2 = (m-1)t^{m-2} dt\). In general, let \(\mu_i\) be the probability measure corresponding to the weighted shift with the weights \(x_{i-1}, \ldots, x_1, \sqrt{m \over m+1}, \ldots, \sqrt{m+k-1 \over m+k}, \ldots\). Then it follows easily from mathematical induction that \(d\mu_i = (m-i+1)t^{m-i} dt, x_i = \sqrt{m-i \over m-i+1} (1 \leq i \leq n-1)\) and \(x_n \leq \sqrt{m-n \over m-n+1}\).

(ii) Let \(\mu_n\) be the probability measure corresponding to the weighted shift with the weights \(x_{n-1}, \ldots, x_1, \sqrt{m \over m+1}, \ldots, \sqrt{m+k-1 \over m+k}, \ldots\). Then
\[d\mu_n = (m-n+1)t^{m-n} dt. \]
Since \(n \geq m\),
\[\int_0^1 \frac{1}{t} d\mu_n = (m-n+1) \cdot \int_0^1 t^{m-n-1} dt = \infty, \]
which implies that \(\frac{1}{t} \notin L^1(\mu_n)\). Hence \(HE(\alpha, \infty) = \emptyset\).

Example 3.3. Let \(W_\alpha\) be the weighted shift whose weight sequence is given by \(\alpha_n := \sqrt{m+1 \over m+2} (n \geq 0)\). By (ii) of Example 3.2, \(W_{\alpha(x)}\) is not subnormal for any \(x > 0\). By Theorem 2.1, we have \(t_1 = 2, t_2 = 3, t_3 = \frac{6}{5}, t_4 = \frac{14}{9}, t_5 = \frac{30}{17}, \ldots\). Hence \(HE(\alpha, k) \setminus HE(\alpha, k+1) = (\lambda_{k+1}, \lambda_k)\), where \(\lambda_1 = \sqrt{2 \over 3}, \lambda_2 = \sqrt{2 \over 5}, \lambda_3 = \sqrt{3 \over 11}, \lambda_4 = \sqrt{6 \over 25}, \lambda_5 = \sqrt{30 \over 137}, \ldots, \) and \(HE(\alpha, \infty) = \emptyset\).
In addition, we consider an example of non-Bergman shift type.

Example 3.4. Let W_{α} be the weighted shift whose weight sequence is given by

$$
\alpha_n := \sqrt{\frac{n+1}{n+2}} \cdot \frac{1}{2} \cdot \frac{2^{n+2} - 1}{2^{n+1} - 1} \quad (n \geq 0).
$$

Let $d\mu := 2\lambda(\frac{1}{4} - 1)dt$. Since $\gamma_n = 2 \int_\frac{1}{4}^1 t^n dt = \frac{1}{n+1} \cdot \frac{1}{2} \cdot (2^{n+1} - 1)$, μ is the probability measure corresponding to the weighted shift with a weight sequence $\alpha := \{\alpha_n\}_{n=0}^\infty$.

Hence W_{α} is subnormal, and, by (3.1), $W_{\alpha(x)}$ is subnormal if and only if $x^2 \int_0^1 \frac{1}{4} d\mu \leq 1$, which is equivalent to $0 < x \leq \frac{1}{\sqrt{2}\lambda_2}$. By Theorem 2.1, we have $t_1 = \frac{1}{4}$, $t_2 = \frac{18}{15}$, $t_3 = \frac{262}{189}$, $t_4 = \frac{445}{327}$, $t_5 = \frac{34997}{25245}$, \ldots, and $HE(\alpha, k) \setminus HE(\alpha, k + 1) = (\lambda_k - 1, \lambda_k]$, where $\lambda_3 = \frac{189}{262} \approx 0.849337$, $\lambda_4 = \frac{321}{445} \approx 0.849322$, $\lambda_5 = \frac{25245}{34997} \approx 0.849322$, \ldots, and $HE(\alpha, \infty) = (0, \frac{1}{\sqrt{2}\lambda_2}]$, with $\frac{1}{\sqrt{2}\lambda_2} \approx 0.849322$.

3.2. Recursively generated type. Using Proposition 2.4, we can recapture a well-known result (cf. [CuP1], [CuP2] or [ChLi]).

Example 3.5. We consider $\alpha := (a, b, c)^\wedge$, where $0 < a < b < c$. Since $\text{rank} \gamma = 2$, by (2.7) $t_1 = \frac{1}{\sqrt{a}}$ and $t_2 = \frac{a^4 - 2a^2 b^2 + b^2 c^2}{a^2 b^2 - b^2}$. Hence

(i) $HE(\alpha, 1) = \{x : 0 < x \leq a\}$,

(ii) $HE(\alpha, 2) = \cdots = HE(\alpha, \infty) = \{x : 0 < x \leq ab\sqrt{\frac{x^2 - b^2}{x^2 - a^2}}\}$.

We close the paper with the following example.

Example 3.6. Let $\alpha := (a, b, c, d, e)^\wedge$ with $0 < a < b < c < d < e$ satisfying

$$
(3.2) \quad \frac{b^2}{c^2} \cdot \frac{e^4 - 2a^2 c^2 + a^2 b^2}{c^2} \leq d^2 \quad \text{and} \quad \frac{c^2}{d^2} \cdot \frac{d^4 - 2b^2 d^2 + b^2 e^2}{d^2 - b^2} \leq e^2.
$$

Then by [Li] Corollary 2.12, W_{α} is subnormal. Assume that $\text{rank} \gamma = 3$. Then by (1.1),

$$
\alpha_n^2 = \psi_2 + \frac{\psi_1}{\alpha_{n-1}^2} + \frac{\psi_0}{\alpha_{n-2}^2} \quad (n \geq 3)
$$

with

$$
\psi_0 = \frac{a^2 b^4 c^2 (b^2 c^4 - 2b^2 c^2 d^2 + c^2 d^4 + b^2 d^2 e^2 - c^2 e^2) + a^4 b^2 c^2 + b^2 d^2 e^2 - c^2 e^2 - c^2 d^2 e^2}{a^4 b^4 - 2a^2 b^2 c^2 + b^2 c^4 + a^2 c^2 d^2 - b^2 c^2 d^2},
$$

$$
\psi_1 = \frac{b^2 c^2 (a^2 b^2 c^2 - a^2 b^2 d^2 - a^2 c^2 d^2 + c^2 d^4 + a^2 c^2 d^2 - c^2 d^2 e^2)}{a^4 b^4 - 2a^2 b^2 c^2 + b^2 c^4 + a^2 c^2 d^2 - b^2 c^2 d^2},
$$

$$
\psi_2 = \frac{c^2 (a^2 b^2 c^2 - a^2 b^2 d^2 + b^2 c^2 d^2 + a^2 c^2 d^2 - b^2 d^2 e^2)}{a^4 b^4 - 2a^2 b^2 c^2 + b^2 c^4 + a^2 c^2 d^2 - b^2 c^2 d^2}.
$$

Hence by (2.7), $t_1 = \frac{1}{\sqrt{a}}$, $t_2 = \frac{a^4 - 2a^2 b^2 + b^2 c^2}{a^2 b^2 - b^2}$, and $t_3 = \frac{A}{B}$, where

$$
A = a^4 b^6 - 3a^2 b^4 c^2 + a^4 b^2 c^4 + 2a^2 b^2 c^4 + 2a^4 b^2 c^2 d^2 - 2a^2 b^4 c^2 d^2 - 2a^2 b^2 c^4 d^2 + b^2 c^2 d^4 - a^4 c^2 d^4 e^2 + 2a^2 b^2 c^2 d^2 e^2 - b^2 c^4 d^2 e^2,
$$

$$
B = a^2 b^2 c^2 (b^2 c^4 - 2b^2 c^2 d^2 + c^2 d^4 + b^2 d^2 e^2 - c^2 e^2).
$$
Hence

(i) \(HE(\alpha, 1) = \{ x : 0 < x \leq a \} \),

(ii) \(HE(\alpha, 2) = \{ x : 0 < x \leq \sqrt{\frac{c^2-b^2}{a^2-2ab+b^2+c^2}} \} \),

(iii) \(HE(\alpha, 3) = \cdots = HE(\alpha, \infty) = \{ x : 0 < x \leq \sqrt{\frac{b}{a}} \} \).

REFERENCES

Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea

E-mail address: ibjung@kyungpook.ac.kr

Department of Mathematics, Yanbian University, Yanji 133-002, People’s Republic of China

Current address: TGRC, Kyungpook National University, Taegu 702-701, Korea

E-mail address: chunjili@hanmail.com

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use