Splitting sets in integral domains

Authors:
D. D. Anderson and Muhammad Zafrullah

Journal:
Proc. Amer. Math. Soc. **129** (2001), 2209-2217

MSC (1991):
Primary 13A05, 13A15, 13G05

Published electronically:
December 28, 2000

MathSciNet review:
1823902

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Let be an integral domain. A saturated multiplicatively closed subset of is a *splitting set* if each nonzero may be written as where and for all . We show that if is a splitting set in , then is a splitting set in , a multiplicatively closed subset of , and that is a splitting set in is an lcm splitting set of , i.e., is a splitting set of with the further property that is principal for all and . Several new characterizations and applications of splitting sets are given.

**1.**D. D. Anderson, David F. Anderson, and Muhammad Zafrullah,*Splitting the 𝑡-class group*, J. Pure Appl. Algebra**74**(1991), no. 1, 17–37. MR**1129127**, 10.1016/0022-4049(91)90046-5**2.**D. D. Anderson, David F. Anderson, and Muhammad Zafrullah,*Factorization in integral domains. II*, J. Algebra**152**(1992), no. 1, 78–93. MR**1190405**, 10.1016/0021-8693(92)90089-5**3.**D. D. Anderson, J. L. Mott, and M. Zafrullah,*Finite character representations for integral domains*, Boll. Un. Mat. Ital. B (7)**6**(1992), no. 3, 613–630 (English, with Italian summary). MR**1191956****4.**D. D. Anderson and Muhammad Zafrullah,*Weakly factorial domains and groups of divisibility*, Proc. Amer. Math. Soc.**109**(1990), no. 4, 907–913. MR**1021893**, 10.1090/S0002-9939-1990-1021893-7**5.**David F. Anderson, Jeanam Park, Gi-Ik Kim, and Heung-Joon Oh,*Splitting multiplicative sets and elasticity*, Comm. Algebra**26**(1998), no. 4, 1257–1276. MR**1612236**, 10.1080/00927879808826197**6.**P. M. Cohn,*Bezout rings and their subrings*, Proc. Cambridge Philos. Soc.**64**(1968), 251–264. MR**0222065****7.**Stefania Gabelli and Moshe Roitman,*On Nagata’s theorem for the class group*, J. Pure Appl. Algebra**66**(1990), no. 1, 31–42. MR**1074693**, 10.1016/0022-4049(90)90122-X**8.**Robert Gilmer and Tom Parker,*Divisibility properties in semigroup rings*, Michigan Math. J.**21**(1974), 65–86. MR**0342635****9.**Joe L. Mott,*The group of divisibility of Rees rings*, Math. Japon.**20**(1975), no. 1, 85–87. MR**0389888****10.**Joe L. Mott and Michel Schexnayder,*Exact sequences of semi-value groups*, J. Reine Angew. Math.**283/284**(1976), 388–401. MR**0404247****11.**Masayoshi Nagata,*A remark on the unique factorization theorem*, J. Math. Soc. Japan**9**(1957), 143–145. MR**0084490****12.**Moshe Roitman,*On Mori domains and commutative rings with 𝐶𝐶^{\perp}𝐼*, J. Pure Appl. Algebra**56**(1989), no. 3, 247–268. MR**982638**, 10.1016/0022-4049(89)90060-1**13.**Muhammad Zafrullah,*On a property of pre-Schreier domains*, Comm. Algebra**15**(1987), no. 9, 1895–1920. MR**898300**, 10.1080/00927878708823512**14.**Muhammad Zafrullah,*The 𝐷+𝑋𝐷_{𝑆}[𝑋] construction from GCD-domains*, J. Pure Appl. Algebra**50**(1988), no. 1, 93–107. MR**931909**, 10.1016/0022-4049(88)90006-0

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
13A05,
13A15,
13G05

Retrieve articles in all journals with MSC (1991): 13A05, 13A15, 13G05

Additional Information

**D. D. Anderson**

Affiliation:
Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242

Email:
dan-anderson@uiowa.edu

**Muhammad Zafrullah**

Affiliation:
Department of Mathematics, SCEN 301, The University of Arkansas, Fayetteville, Arkansas 72701

Address at time of publication:
Department of Mathematics, Campus Box 8085, Idaho State University, Pocatello, Idaho 83209

Email:
kamla@compuserve.com, mzafrullah@usa.net

DOI:
https://doi.org/10.1090/S0002-9939-00-05863-9

Keywords:
Splitting sets

Received by editor(s):
May 5, 1999

Received by editor(s) in revised form:
December 18, 1999

Published electronically:
December 28, 2000

Communicated by:
Wolmer V. Vasconcelos

Article copyright:
© Copyright 2000
American Mathematical Society