BOREL COMPLEXITY OF THE SPACE
OF PROBABILITY MEASURES

ABHIJIT DASGUPTA

(Communicated by Andreas R. Blass)

Abstract. Using a technique developed by Louveau and Saint Raymond, we
find the complexity of the space of probability measures in the Borel hierarchy:
if \(X \) is any non-Polish Borel subspace of a Polish space, then \(P(X) \), the
space of probability Borel measures on \(X \) with the weak topology, is always
true \(\Pi^0_\xi \), where \(\xi \) is the least ordinal such that \(X \) is \(\Pi^0_\xi \).

1. Introduction

For \(X \) a separable metric space, let \(P(X) \) be the space of probability Borel
measures on \(X \) with the usual topology of weak convergence, so that \(P(X) \)
is also a separable metrizable space. Many results relating the descriptive complexities of
\(X \) and \(P(X) \) are classical and standard. For example (see [1], [5]), \(X \) is compact-
metrizable (resp. Polish) iff \(P(X) \) is compact-metrizable (resp. Polish), \(X \) is Borel
(resp. projective) iff \(P(X) \) is Borel (resp. projective), etc. Beyond the domain of
Borel sets we have: \(X \) is analytic (resp. co-analytic) iff \(P(X) \) is analytic (resp. co-
analytic), which follows from results of Kechris [2], and this also extends to every
level of the projective hierarchy under additional set-theoretic hypotheses. Shreve’s
theorem ([6]) establishes the same equivalence for each level of the \(C \)-hierarchy of
Selivanovski.

In this note we prove a similar result for the Borel hierarchy. It is known ([2])
that, for \(\alpha \geq 2 \), \(P(X) \) is \(\Pi^0_\alpha \) iff \(X \) is \(\Sigma^0_\alpha \); hence if \(X \) is \(\Sigma^0_\alpha \), then \(P(X) \) is \(\Pi^0_{\alpha+1} \).
This suggests the question: Is this the best bound? More generally, for \(\Gamma \) and \(\Gamma' \)
any two intrinsic Borel pointclasses, we ask: If \(X \) is in \(\Gamma \), is \(P(X) \) in \(\Gamma' \)? It is also
easy to find, for each \(\alpha \geq 3 \), an example of a \(P(X) \) which is true \(\Pi^0_\alpha \); just take \(X \)
to be any space which is true \(\Pi^0_\alpha \); since \(X \) is always embedded in \(P(X) \) as a closed
subset, \(P(X) \) cannot be \(\Sigma^0_\alpha \) lest \(X \) be \(\Sigma^0_\alpha \). This suggests the question: For which
\(\alpha \geq 3 \) can we find \(X \) such that \(P(X) \) is true \(\Sigma^0_\alpha \) (or true \(\Delta^0_\alpha \))?

Theorem 3.1 below answers these questions, and determines uniquely the true
Borel class of \(P(X) \) from the true Borel class of \(X \); it says: \(P(X) \) is Polish if \(X \) is
Polish, and for every \(\alpha \geq 3 \), \(P(X) \) is true \(\Pi^0_\alpha \) if \(X \) is true \(\Pi^0_\alpha \), \(P(X) \) is true \(\Pi^0_{\alpha+1} \).
if X is true Σ_α^0, and $P(X)$ is true Π_α^0 if X is true Δ_α^0. (These cases are mutually exclusive and exhaustive for Borel X.) In particular, if X is Borel, then either $P(X)$ is Polish or $P(X)$ is true Π_α^0 for some (unique) $\alpha \geq 3$, so that if $\alpha \geq 3$, there is no X such that $P(X)$ is true Σ_α^0 or true Δ_α^0.

2. Terminology

We use the notation of [1] and [4] for the Borel pointclasses: the additive, multiplicative, and ambiguous classes of level α are denoted, respectively, by Σ_α^0, Π_α^0, and Δ_α^0, with Σ_1^0 denoting the pointclass of open sets. Γ is a Borel pointclass if Γ is one of Σ_α^0, Π_α^0, and Δ_α^0. If X is a Polish space, we use the notation $\Sigma_\alpha^0 | X$ to denote the Σ_α^0 subsets of X, and similarly for Π_α^0 and Δ_α^0. Note that for $\alpha \geq 2$ the pointclass Π_α^0 is intrinsic † and for $\alpha \geq 3$ the pointclasses Σ_α^0 and Δ_α^0 are also intrinsic. For an intrinsic pointclass Γ, we can speak (unambiguously) of a separable metrizable space X being Γ, without mentioning any Polish space in which X is embedded. The notion of “the true Borel class” of a Borel set is defined in the usual way.

ω^* denotes the Baire space, i.e., the space of irrationals. If X, Y are Polish spaces, $B \subseteq Y$, and \mathcal{C} is a collection of subsets of X, we say that B is \mathcal{C}-hard if for all $C \in \mathcal{C}$ there is a continuous $f: X \to Y$ such that $C = f^{-1}(B)$.

If X is a metrizable space, $P(X)$ denotes the space of probability measures on X with the weak topology ‡.

For a separable metrizable space Y, and a Borel $X \subseteq Y$, we can (topologically) identify (see [1]) the space $P(X)$ with the subspace $P(X/Y)$ of $P(Y)$, where

$$P(X/Y) \overset{\text{def}}{=} \{ \mu \in P(Y) \mid \mu(Y \setminus X) = 0 \}.$$

3. The Borel complexity of $P(X)$

Theorem 3.1. If X is any non-Polish Borel subspace of a Polish space, then $P(X)$ is true Π_ξ^0, where ξ is the least such that X is Π_ξ^0.

Proof. We will use the following two lemmas:

Lemma 3.2 (Louveau and Saint Raymond). If Y is a Polish space, α is a countable ordinal ≥ 2, $A \subseteq Y$ such that A is Borel, and $A \not\in \Pi_\alpha^0$, then A is $\Sigma_\alpha^0 | \omega^*$-hard, i.e. for all $B \subseteq \omega^*$, if B is Σ_α^0, then $B = f^{-1}(A)$ for some continuous $f: \omega^* \to Y$.

Proof. This is an immediate consequence of [3] Theorem 3, p. 455].

Lemma 3.3 (The δ-propagation lemma). Let Y, Z be Polish spaces, \mathcal{C} a collection of subsets of Z, and X a subset of Y which is \mathcal{C}-hard, i.e. for every A in \mathcal{C} there is a continuous map f from Z to Y such that $A = f^{-1}(X)$. Then $P(X/Y)$ is \mathcal{C}_δ-hard, where \mathcal{C}_δ denotes the countable intersections of sets in \mathcal{C}.

† Γ is an intrinsic pointclass if for all Polish X, Y and $A \subseteq X$, $B \subseteq Y$, if A is a Γ-set in X and A is homeomorphic to B, then B is a Γ-set in Y.

‡ The collection of all countably additive non-negative real-valued functions μ defined on the Borel sets of X such that $\mu(X) = 1$.

3 The weakest topology such that, for every bounded continuous real-valued function f on X, the real-valued map $\mu \to \int fd\mu$ defined on $P(X)$ is continuous.
Proof. Let \(X, Y, Z, \) and \(C \) be as above. To show that \(P(X/Y) \) is \(C_{\delta} \)-hard, let \(F \) be an arbitrary subset of \(Z \) in \(C_{\delta} \). Then there is sequence \((E_n)_{n=0}^\infty \) of subsets of \(Z \) such that \((\forall n)(E_n \in C) \), and

\[
F = \bigcap_{n=0}^\infty E_n.
\]

For each \(n \in \omega \), choose a continuous function \(f_n: Z \to Y \) such that

\[
E_n = f_n^{-1}(X).
\]

Define \(\Psi: Z \to P(Y) \) by setting for each \(x \in Z \) and each Borel \(E \subseteq Y \):

\[
\Psi(x)(E) = \sum_{k=0}^\infty \frac{\chi_E(f_k(x))}{2^{k+1}},
\]

where, for any set \(A \), \(\chi_A \) denotes the characteristic function of \(A \). In other words, for any \(x \in Z \), \(\Psi(x) \) is the measure

\[
\Psi(x) = \sum_{k=0}^\infty \frac{1}{2^{k+1}} \delta_{f_k(x)} ,
\]

where, for any \(y \in Y \), \(\delta_y \) denotes the probability measure on \(Y \) known as the “unit mass” at \(y \). \(\Psi \) is well-defined and continuous. It is now easy to verify that \(\Psi \) reduces \(F \) to \(P(X/Y) \).

Now let \(X \) be non-Polish Borel, and \(Y \) be any metrizable compactification of \(X \); let \(\alpha \) be the least such that \(X \in \Sigma^0_\alpha \). Then \(\alpha \geq 3 \), as \(X \) is not \(\Pi^0_3 \) in \(Y \). Also, \(P(X) \) is \(\Pi^0_\alpha \). It remains to show that \(P(X) \) is not \(\Sigma^0_\alpha \) (\(\Sigma^0_\alpha \) is an intrinsic pointclass since \(\alpha \geq 3 \)). Put \(Z = \omega^\omega \), and

\[
\mathcal{E} = \bigcup_{\beta < \alpha} \Sigma^0_\beta | \omega^\omega.
\]

By Lemma 57.2 \(X \) is \(\Sigma^0_\beta | \omega^\omega \)-hard for every \(\beta < \alpha \), and hence is \(\mathcal{E} \)-hard. The hypotheses of the \(\delta \)-propagation lemma now hold. Therefore \(P(X/Y) \) is \(C_{\delta} \)-hard; but \(\mathcal{E} = \Pi^0_\alpha | \omega^\omega \). So \(P(X) \) must be true \(\Pi^0_\alpha \).

It follows from the above theorem that the Borel complexity of the space of probability measures on \(\mathbb{Q} \) (the rationals) is \(\mathcal{F}_{\sigma\delta} \) but not \(\mathcal{G}_{\delta\sigma} \).

References

E-mail address: takdoom@yahoo.com