Borel Complexity of the Space of Probability Measures

Abhijit Dasgupta

Abstract. Using a technique developed by Louveau and Saint Raymond, we find the complexity of the space of probability measures in the Borel hierarchy: if X is any non-Polish Borel subspace of a Polish space, then $P(X)$, the space of probability Borel measures on X with the weak topology, is always true Π^0_ξ, where ξ is the least ordinal such that X is Π^0_ξ.

1. Introduction

For X a separable metric space, let $P(X)$ be the space of probability Borel measures on X with the usual topology of weak convergence, so that $P(X)$ is also a separable metrizable space. Many results relating the descriptive complexities of X and $P(X)$ are classical and standard. For example (see [1], [5]), X is compact-metrizable (resp. Polish) iff $P(X)$ is compact-metrizable (resp. Polish), X is Borel (resp. projective) iff $P(X)$ is Borel (resp. projective), etc. Beyond the domain of Borel sets we have: X is analytic (resp. co-analytic) iff $P(X)$ is analytic (resp. co-analytic), which follows from results of Kechris [2], and this also extends to every level of the projective hierarchy under additional set-theoretic hypotheses. Shreve’s theorem (6) establishes the same equivalence for each level of the C-hierarchy of Selivanovski.

In this note we prove a similar result for the Borel hierarchy. It is known (2) that, for $\alpha \geq 2$, $P(X)$ is Π^0_α iff X is Σ^0_α; hence if X is Σ^0_α, then $P(X)$ is $\Pi^0_{\alpha+1}$. This suggests the question: Is this the best bound? More generally, for Γ and Γ' any two intrinsic Borel pointclasses, we ask: If X is in Γ, is $P(X)$ in Γ'? It is also easy to find, for each $\alpha \geq 3$, an example of a $P(X)$ which is true Π^0_α: just take X to be any space which is true Π^0_α; since X is always embedded in $P(X)$ as a closed subset, $P(X)$ cannot be Σ^0_α lest X be Σ^0_α. This suggests the question: For which $\alpha \geq 3$ can we find X such that $P(X)$ is true Σ^0_α (or true Δ^0_α)?

Theorem 3.1 below answers these questions, and determines uniquely the true Borel class of $P(X)$ from the true Borel class of X; it says: $P(X)$ is Polish if X is Polish, and for every $\alpha \geq 3$, $P(X)$ is true Π^0_α if X is true Π^0_α, $P(X)$ is true $\Pi^0_{\alpha+1}$.
if X is true Σ^0_α, and $P(X)$ is true Π^0_α if X is true Δ^0_α. (These cases are mutually exclusive and exhaustive for Borel X.)

In particular, if X is Borel, then either $P(X)$ is Polish or $P(X)$ is true Π^0_α for some (unique) $\alpha \geq 3$, so that if $\alpha \geq 3$, there is no X such that $P(X)$ is true Σ^0_α or true Δ^0_α.

2. Terminology

We use the notation of $[1]$ and $[3]$ for the Borel pointclasses: the additive, multiplicative, and ambiguous classes of level α are denoted, respectively, by Σ^0_α, Π^0_α, and Δ^0_α, with Σ^0_1 denoting the pointclass of open sets. Γ is a Borel pointclass if Γ is one of Σ^0_α, Π^0_α, and Δ^0_α. If X is a Polish space, we use the notation $\Sigma^0_\alpha X$ to denote the Σ^0_α subsets of X, and similarly for $\Pi^0_\alpha X$ and $\Delta^0_\alpha X$. Note that for $\alpha \geq 2$ the pointclass Π^0_α is intrinsic and for $\alpha \geq 3$ the pointclasses Σ^0_α and Δ^0_α are also intrinsic. For an intrinsic pointclass Γ, we can speak (unambiguously) of a separable metrizable space X being Γ, without mentioning any Polish space in which X is embedded. The notion of “the true Borel class” of a Borel set is defined in the usual way.

ω^ω denotes the Baire space, i.e., the space of irrationals. If X, Y are Polish spaces, $B \subseteq Y$, and \mathcal{C} is a collection of subsets of X, we say that B is \mathcal{C}-hard if for all $C \in \mathcal{C}$ there is a continuous $f: X \to Y$ such that $C = f^{-1}(B)$.

If X is a metrizable space, $P(X)$ denotes the space of probability measures on X with the weak topology.

For a separable metrizable space Y, and a Borel $X \subseteq Y$, we can (topologically) identify (see $[1]$) the space $P(X)$ with the subspace $P(X/Y)$ of $P(Y)$, where

$$P(X/Y) \overset{\text{def}}{=} \{ \mu \in P(Y) \mid \mu(Y \setminus X) = 0 \}.$$

3. The Borel complexity of $P(X)$

Theorem 3.1. If X is any non-Polish Borel subspace of a Polish space, then $P(X)$ is true Π^0_ξ, where ξ is the least such that X is Π^0_ξ.

Proof. We will use the following two lemmas:

Lemma 3.2 (Louveau and Saint Raymond). If Y is a Polish space, α is a countable ordinal ≥ 2, $A \subseteq Y$ such that A is Borel, and $A \notin \Pi^0_\alpha$, then A is $\Sigma^0_\alpha | \omega^\omega$-hard, i.e., for all $B \subseteq \omega^\omega$, if B is Σ^0_α, then $B = f^{-1}(A)$ for some continuous $f: \omega^\omega \to Y$.

Proof. This is an immediate consequence of $[3]$ Theorem 3, p. 455.

Lemma 3.3 (The δ-propagation lemma). Let Y, Z be Polish spaces, \mathcal{C} a collection of subsets of Z, and X a subset of Y which is \mathcal{C}-hard, i.e., for every A in \mathcal{C} there is a continuous map f from Z to Y such that $A = f^{-1}(X)$. Then $P(X/Y)$ is \mathcal{C}_δ-hard, where \mathcal{C}_δ denotes the countable intersections of sets in \mathcal{C}.

1. Γ is an intrinsic pointclass if for all Polish X, Y and $A \subseteq X$, $B \subseteq Y$, if A is a Γ-set in X and A is homeomorphic to B, then B is a Γ-set in Y.

2. The collection of all countably additive non-negative real-valued functions μ defined on the Borel sets of X such that $\mu(X) = 1$.

3. The weakest topology such that, for every bounded continuous real-valued function f on X, the real-valued map $\mu \to \int f d\mu$ defined on $P(X)$ is continuous.
Proof. Let \(X, Y, Z, \) and \(C \) be as above. To show that \(P(X=Y) \) is \(\mathcal{C}_\delta \)-hard, let \(F \) be an arbitrary subset of \(Z \) in \(\mathcal{C}_\delta \). Then there is sequence \((E_n)_{n=0}^\infty \) of subsets of \(Z \) such that \((\forall n)(E_n \in \mathcal{C}) \), and
\[
F = \bigcap_{n=0}^\infty E_n.
\]
For each \(n \in \omega \), choose a continuous function \(f_n : Z \to Y \) such that
\[
E_n = f_n^{-1}(X).
\]
Define \(\Psi : Z \to P(Y) \) by setting for each \(x \in Z \) and each Borel \(E \subseteq Y \):
\[
\Psi(x)(E) = \sum_{k=0}^\infty \frac{X E(f_k(x))}{2^{k+1}}.
\]
where, for any set \(A \), \(\chi_A \) denotes the characteristic function of \(A \). In other words, for any \(x \in Z \), \(\Psi(x) \) is the measure
\[
\Psi(x) = \sum_{k=0}^\infty \frac{1}{2^{k+1}} \delta_{f_k(x)},
\]
where, for any \(y \in Y \), \(\delta_y \) denotes the probability measure on \(Y \) known as the “unit mass” at \(y \). \(\Psi \) is well-defined and continuous. It is now easy to verify that \(\Psi \) reduces \(F \) to \(P(X/Y) \).

Now let \(X \) be non-Polish Borel, and \(Y \) be any metrizable compactification of \(X \); let \(\alpha \) be the least such that \(X \) is \(\Pi^0_\alpha \). Then \(\alpha \geq 3 \), as \(X \) is not \(\Pi^0_2 \) in \(Y \). Also, \(P(X) \) is \(\Pi^0_\alpha \). It remains to show that \(P(X) \) is not \(\Sigma^0_\alpha \) (\(\Sigma^0_\alpha \) is an intrinsic pointclass since \(\alpha \geq 3 \)). Put \(Z = \omega^\omega \), and
\[
\mathcal{E} = \bigcup_{\beta < \alpha} \Sigma^0_\beta \setminus \omega^\omega.
\]
By Lemma 3.2 \(X \) is \(\Sigma^0_\beta \setminus \omega^\omega \)-hard for every \(\beta < \alpha \), and hence is \(\mathcal{E} \)-hard. The hypotheses of the \(\delta \)-propagation lemma now hold. Therefore \(P(X/Y) \) is \(\mathcal{C}_\delta \)-hard; but \(\mathcal{C}_\delta = \Pi^0_\alpha \setminus \omega^\omega \). So \(P(X) \) must be true \(\Pi^0_\alpha \).

It follows from the above theorem that the Borel complexity of the space of probability measures on \(\mathbb{Q} \) (the rationals) is \(F_{\sigma \delta} \) but not \(G_{\delta \sigma} \).

References

E-mail address: takdoo@yahoo.com