REAL GROUPS TRANSITIVE ON COMPLEX FLAG MANIFOLDS

JOSEPH A. WOLF

(Communicated by Rebecca A. Herb)

Abstract. Let $Z = G/Q$ be a complex flag manifold. The compact real form G_u of G is transitive on Z. If G_0 is a noncompact real form, such transitivity is rare but occasionally happens. Here we work out a complete list of Lie subgroups of G transitive on Z and pick out the cases that are noncompact real forms of G.

0. The problem

Let $Z = G/Q$ be a complex flag manifold where G is a complex connected semisimple Lie group and Q is a parabolic subgroup. Let G_0 be a real form of G. If G_0 is the compact real form, then it is transitive on Z. On a number of occasions the question has come up as to whether any noncompact real form of G can be transitive on Z. Here I'll record the answer. The rough answer is "yes, but just a few." The precise answer, Corollaries 1.7 and 2.3 below, follows from a more general classification, Theorems 1.6 and 2.2. This more general classification uses a technique of D. Montgomery [M], together with some results of [W1] that depend in an essential way on a classification [O1] of A. L. Onishchik.

After this paper was written I learned of Onishchik's book [O2]. There is some overlap for compact groups, but there are no inclusions.

1. The solution for irreducible flags

We formulate the problem in terms of transitive subgroups. Let G_u be the compact real form of G, so $Z = G_u/(G_u \cap Q)$ and $G_u \cap Q$ is the compact real form of the reductive part of Q. Let $A \subseteq G$ be a closed subgroup that is transitive on Z. The identity component A^0 of A is transitive on Z, because Z is connected, so a maximal compact subgroup $B^0 \subset A^0$ already is transitive on Z, according to Montgomery [M]. We may replace A by a conjugate and assume $B = A \cap G_u$. So
now we have several expressions:

\[Z = G/Q = G_u/(G_u \cap Q) = A/(A \cap Q) = B/(B \cap Q) \]

\[= A^0/(A^0 \cap Q) = B^0/(B^0 \cap Q). \]

According to [1], there are just a few possibilities for a homogeneous almost–\(\text{hermitian manifold} \) \(Z \) to have distinct expressions such as \(G_u/L_u \) and \(B^0/(B^0 \cap L_u) \), where \(G_u \) is the identity component of the group of all almost–\(\text{hermitian isometries} \), \(G_u \) is simple, \(L_u \) is the centralizer of a torus subgroup of \(G_u \), and \(B^0 \subset G_u \) with \(B^0 \) connected. They are:

(1.2) \(Z = S^2/\mathbb{C}(\mathbb{C}) = SU(2n)/U(2n-1) = Sp(n)/(Sp(n-1) \cdot U(1)) \), complex projective space.

(1.3) \(Z = SO(2r+2)/U(r+1) = SO(2r+1)/U(r) \), unitary structures on \(\mathbb{R}^{2r+2} \).

(1.4) \(Z = SO(7)/(SO(5) \cdot SO(2)) = G_2/U(2) \), 5–dimensional complex quadric.

(1.5) \(Z = SO(8)/(SO(6) \cdot SO(2)) = \{Spin(7)/Z_2\}/U(3) \), 6–dimensional complex quadric.

This applies in our situation because \(L_u = G_u \cap Q \) is the centralizer of a torus subgroup of \(G_u \), and \(Z \) has a \(G_u \)-invariant hermitian metric.

Now return to the expression \(Z = G/Q \). \(G \) (and thus \(G_u \)) is simple. Let \(A \subset G \) be a closed subgroup that is transitive on \(Z \) and let \(B \) be its maximal compact subgroup. We may assume \(B = A \cap G_u \). Then \(B \subset G_u \), \(B^0 \) is transitive on \(Z \), and the expression \(Z = G_u/L_u = B^0/(B^0 \cap L_u) \) is given above. In each case the group \(B^0 \) is simple, so \(A^0 \) has Levi decomposition \(A^0 = A_{ss}A_{rad} \) into semisimple part and solvable radical, where \(B^0 \) is a maximal compact subgroup of \(A_{ss}^0 \). We run through the 4 possibilities listed above.

For (1.2), \(G = SL(2n; \mathbb{C}) \) and \(B^0 = Sp(n) \). The semisimple Lie groups with maximal compact subgroup \(Sp(n) \) are \(Sp(n), Sp(n; \mathbb{C}), \) the quaternionic linear group \(SL(n; \mathbb{H}) \), and, for \(n = 4 \), the real group \(F_4 \). But \(F_4 \) does not have a representation of degree 8, in other words \(F_4 \not\subset G \), so now \(A_{ss}^0 \) is one of \(Sp(n), Sp(n; \mathbb{C}) \) and \(SL(n; \mathbb{H}) \). Each of them is irreducible on \(\mathbb{C}^{2n} \), so the unipotent radical of the algebraic hull of \(A^0 \) acts trivially on \(\mathbb{C}^{2n} \) and the center of the reductive part of \(A^0 \) acts by scalars. As \(G \) acts effectively and by transformations of determinant 1 on \(\mathbb{C}^{2n} \) now \(A_{ss}^0 = A^0 \), so \(A^0 \) is one of \(Sp(n), Sp(n; \mathbb{C}) \) and \(SL(n; \mathbb{H}) \). If \(g \in G \) normalizes \(A^0 \), then some element \(g' \in gA^0 \) centralizes \(A^0 \), because \(A^0 \) has no rational outer automorphism. As \(A^0 \) is irreducible on \(\mathbb{C}^{2n} \) now \(g' \) is scalar (and thus acts trivially on \(Z \)). Thus \(A = A^0 F \) where \(F \) can be any subgroup of the center \(\{e^{2\pi ik/2n}I \mid 0 \leq k < 2n \} \) of \(G \).

For (1.3), \(G = SO(2r+2; \mathbb{C}) \) and \(B^0 = SO(2r+1) \). The semisimple Lie groups with maximal compact subgroup \(SO(2r+1) \) are \(SO(2r+1), SO(2r+1; \mathbb{C}), SO(1,2r+1), \) and \(SL(2r+1; \mathbb{R}) \). But \(A_{ss}^0 = SL(2r+1; \mathbb{R}) \) would give \(SL(2r+1; \mathbb{C}) \subset SO(2r+2; \mathbb{C}) \), so the respective dimensions would satisfy \(4r^2 + 4r \leq 2r^2 + 3r + 1 \), forcing \(r = 0 \) and \(Z = \{ \text{point} \} \). Thus \(A_{ss}^0 \neq SL(2r+1; \mathbb{R}) \). Now \(A_{ss}^0 \) is one of \(SO(2r+1), SO(2r+1; \mathbb{C}) \), and \(SO(1,2r+1) \). The last one acts irreducibly on \(\mathbb{C}^{2r+2} \), and there \(A_{ss}^0 = A^0 \) as above. For the first two, recall that \(SO(2r+1) \) is absolutely irreducible on the tangent space \(so(2r+2)/so(2r+1) \) of the sphere \(S^{2r+1} \), so \(A_{rad}^0 \) has Lie algebra reduced to 0, and again \(A_{ss}^0 = A^0 \). Now \(A^0 \) is one of \(SO(2r+1), SO(2r+1; \mathbb{C}) \), and \(SO(1,2r+1) \). If \(g \in G \) normalizes \(A^0 \), then some

1 The author thanks the referee for a comment that improved and clarified his treatment of this \(SL(2r+1; \mathbb{R}) \) case.
element \(g' \in gA^0 \) centralizes \(A^0 \), because \(A^0 \) has no rational outer automorphism. Thus either \(A = A^0 \) or \(A/A^0 \) has order 2 where \(A \) is one of \(O(2r + 1), O(2r + 1; \mathbb{C}) \), and \(SO(1, 2r + 1) \cdot \{ \pm I \} \).

For (1.4), \(G = SO(7; \mathbb{C}) \) and \(B^0 = G_2 \). The semisimple Lie groups with maximal compact subgroup \(G_2 \) are \(G_2 \) and its complexification \(G_{2, \mathbb{C}} \). They are irreducible on \(\mathbb{C}^7 \) and have no rational outer automorphisms, so, as before, \(A^0 \) is either \(G_2 \) or \(G_{2, \mathbb{C}} \), and if \(g \in G \) normalizes \(A^0 \), then some element \(g' \in gA^0 \) centralizes \(A^0 \). This forces \(g' \) to be central in \(SO(7; \mathbb{C}) \), so \(g' = 1 \) and \(A = A^0 \). Thus \(A \) is either \(G_2 \) or \(G_{2, \mathbb{C}} \).

Finally, (1.5) is obtained from the case \(r = 3 \) of (1.3) by applying the triality automorphism, so it does not give us anything more.

In summary,

Theorem 1.6. Consider a complex flag manifold \(Z = G/Q \). Suppose that \(Z \) is irreducible, i.e., that \(G \) is simple. Then the closed subgroups \(A \subset G \) transitive on \(Z \), \(G \neq A \neq G \), are precisely those given as follows:

1. \(Z = SU(2n)/U(2n - 1) = P^{2n-1}(\mathbb{C}) \) complex projective \((2n - 1)-\)space; \(G = SL(2n; \mathbb{C}) \) and \(A = A^0F \) where \(A^0 \) is one of \(Sp(n) \), \(Sp(n; \mathbb{C}) \) and \(SL(n; \mathbb{H}) \), and \(F \) is any subgroup of the center \(\{ e^{2\pi i k/2n}I \mid 0 \leq k < 2n \} \) of \(G \). Here \(F \) acts trivially on \(Z \), so \(A \) and \(A^0 \) have the same action on \(Z \).

2. \(Z = SO(2r + 2)/U(r + 1) \), unitary structures on \(\mathbb{R}^{2r+2} \); \(G = SO(2r + 2; \mathbb{C}) \) and \(A = A^0F \) where \(A^0 \) is one of \(SO(2r + 1) \), \(SO(2r + 1; \mathbb{C}) \), and \(SO(1, 2r + 1) \), and where \(F \) is any subgroup of the center \(\{ \pm I \} \) of \(G \). Here \(F \) acts trivially on \(Z \), so \(A \) and \(A^0 \) have the same action on \(Z \).

3. \(Z = SO(7)/(SO(5) \cdot SO(2)) \), 5-dimensional complex quadric; \(G = SO(7; \mathbb{C}) \) and \(A \) is either the compact connected group \(G_2 \) or its complexification \(G_{2, \mathbb{C}} \).

Picking out the cases where \(A \) is a real form of \(G \) we have

Corollary 1.7. Consider a complex flag manifold \(Z = G/Q \). Suppose that \(Z \) is irreducible, i.e., that \(G \) is simple. Then the (connected) noncompact real forms \(G_0 \subset G \) transitive on \(Z \) are precisely those given as follows:

1. \(Z = SU(2n)/U(2n - 1) = P^{2n-1}(\mathbb{C}) \) complex projective \((2n - 1)-\)space; \(G = SL(2n; \mathbb{C}) \) and \(G_0 \) is the quaternion linear group \(SL(n; \mathbb{H}) \), which has maximal compact subgroup \(Sp(n) \).

2. \(Z = SO(2r + 2)/U(r + 1) \), unitary structures on \(\mathbb{R}^{2r+2} \); \(G = SO(2r + 2; \mathbb{C}) \) and \(G_0 \) is the Lorentz group \(SO(1, 2r + 1) \), which has maximal compact subgroup \(SO(2r + 1) \).

2. The solution for flag manifolds in general

We complete the solution of the problem by reducing it to the case where \(Z \) is irreducible.

Proposition 2.1. Decompose \(G = \prod G_i \), the local direct product of complex connected simple Lie groups. Thus \(Z = \prod Z_i \), the product of irreducible flag manifolds \(Z_i = G_i/Q_i \) where \(Q_i = Q \cap G_i \). Then \(A^0 = \prod A^0_i \) with \(A^0_i = A^0 \cap G_i \) and \(B^0 = \prod B^0_i \) with \(B^0_i = B^0 \cap G_i \). The groups \(A^0_i \) and \(B^0_i \) are connected, simple, and transitive on \(Z_i \).

Proof. The solvable radical of \(A^0 \) is contained in a Borel subgroup of \(G \), and thus has a fixed point on \(Z \). It is normal in the transitive group \(A^0 \) so it fixes every point. Thus \(A^0 \) is semisimple. Similarly \(B^0 \) is semisimple.
Let $\pi_i : G \to G_i$ denote the projection. The compact connected group $\pi_i(B^0)$ is transitive on Z_i. So it must be the compact real form $G_{u,i} = G_i \cap G_u$ of G_i or one of the compact connected transitive groups described in (1.2), (1.3) or (1.4). (Recall that (1.5) is in fact a special case of (1.3).) In all cases, $\pi_i(B^0)$ is nontrivial and simple. Now π_i annihilates all but one of the simple factors of B^0. Obviously no simple factor of B^0 is annihilated by every π_i. So now $B^0 = \prod B^0_\alpha$ where the B^0_α are simple and where the index set I for $G = \prod_i G_i$ is a disjoint union of subsets I_α with $B^0_\alpha \subset \prod_{i \in I_\alpha} G_i$. The proof of Proposition 2.1 is reduced to the case where B^0 (and thus also A^0) is simple, and there it is reduced to the proof that G_u is simple.

We may now assume B^0 simple. Suppose that G_u is not simple. Projecting to $G_1 \times G_2$ we may assume $G = G_1 \times G_2$. View the isomorphisms $\pi_i : B^0 \cong \pi_i(B^0)$ as identifications. Denote $E_i = \pi_i(B^0)$, the complexification of the image of B^0 in G_i. Denote $E_{u,i} = \pi_i(B^0)$, the compact real form of E_i. Denote $P_i = E_i \cap Q_i$, the parabolic subgroup of E_i that is its isotropy subgroup in Z_i, so $Z_i = E_i/P_i$. Now $B^0_C = \{(e,e) \mid e \in E_1\}$, $B^0_C \cap Q = \{(p,p) \mid p \in (P_1 \cap P_2)\}$, and $Z = B^0_C/(B^0_C \cap Q) \cong E_1/(P_1 \cap P_2)$. In particular $P_1 \cap P_2$ is a parabolic subgroup of E_1. Compute complex dimensions: $\dim E_1 - \dim (P_1 \cap P_2) = \dim B^0 - \dim (B^0 \cap Q) = \dim Z = \dim Z_1 + \dim Z_2 = (\dim E_1 - \dim P_1) + (\dim E_1 - \dim P_2)$. On the Lie algebra level this says $\dim \mathfrak{t}_1 = \dim \mathfrak{p}_1 + \dim \mathfrak{p}_2 - \dim (\mathfrak{p}_1 \cap \mathfrak{p}_2)$, in other words $\mathfrak{p}_1 + \mathfrak{p}_2 = \mathfrak{t}_1$. As $\mathfrak{p}_1 \cap \mathfrak{p}_2$ is a parabolic subalgebra of \mathfrak{t}_1 we have a Cartan subalgebra \mathfrak{h} and a Borel subalgebra \mathfrak{g} with $\mathfrak{h} \subset \mathfrak{s} \subset \mathfrak{p}_1 \cap \mathfrak{p}_2$. In the root order such that \mathfrak{s} is the sum of \mathfrak{h} and the negative root spaces, no parabolic containing \mathfrak{s} can contain the root space for the maximal root. This contradicts $\mathfrak{p}_1 + \mathfrak{p}_2 = \mathfrak{t}_1$. The contradiction proves G_u simple and completes the proof. □

Combining Proposition 2.1 with Theorem 1.6 we have

Theorem 2.2. Let $Z = G/Q$, the complex flag manifold, where G is a complex connected semisimple Lie group acting with finite kernel on Z. Then the closed subgroups $A \subset G$ transitive on Z are precisely those given as follows. Decompose $G = \prod G_i$ with G_i simple, so $Z = \prod Z_i$ with $Z_i = G_i/(Q \cap G_i)$. Then $A = A^0F$ where $A^0 = \prod A_i$ with $A_i = (A \cap G_i)^0$, and A_i is equal to G_i, or to its compact real form $G_{u,i}$, or to one of the three types listed in Theorem 1.6 and F is any subgroup of the center of G. Here F acts trivially on Z, so A and A^0 have the same action on Z.

Picking out the cases where A is a real form of G we have, as in Corollary 1.7

Corollary 2.3. Let $Z = G/Q$, the complex flag manifold, where G is a complex connected semisimple Lie group acting with finite kernel on Z. Then the (connected) real forms $G_0 \subset G$ transitive on Z are precisely those given as follows. Decompose $G = \prod G_i$ with G_i simple, so $Z = \prod Z_i$ with $Z_i = G_i/(Q \cap G_i)$. Then $A = \prod A_i$ where $A_i = A_i \cap G_i$ either is the compact real form $G_{u,i}$ of G_i or is one of the two types listed in Corollary 1.7.

References

Institut für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

(Permanent address) Department of Mathematics, University of California, Berkeley, California 94720–3840

E-mail address: jawolf@math.berkeley.edu