Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the solutions of the congruence $n^{2}\equiv 1~(mod~\phi ^{2}(n))$


Authors: Florian Luca and Michal Krizek
Journal: Proc. Amer. Math. Soc. 129 (2001), 2191-2196
MSC (2000): Primary 11A07, 11A25, 11D09
DOI: https://doi.org/10.1090/S0002-9939-01-05929-9
Published electronically: January 17, 2001
MathSciNet review: 1823899
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

In this note, we show that if $n$ is a positive integer satisfying the congruence $n^{2}\equiv 1~ (mod~\phi ^{2}(n))$, then $n\le 3$.


References [Enhancements On Off] (What's this?)

  • 1. R.D. Carmichael: On the numerical factors of the arithmetic forms $\alpha ^{n}+\beta ^{n}$, Ann. of Math. 2 (15) (1913), 30-70.
  • 2. R.K. Guy: Unsolved problems in number theory, Springer-Verlag, 1994. MR 96e:11002
  • 3. L.K. Hua: Introduction to number theory, Springer-Verlag, 1982. MR 83f:10001
  • 4. H.L. Montgomery, R.C. Vaughan: On the large sieve, Mathematika 20 (1973), 119-134. MR 51:10260
  • 5. C. Pomerance: On composite $n$ for which $\phi (n) \vert n-1$, Acta Arith. 28 (1976), 387-389; II Pacific J. Math. 69 (1977), 177-186. MR 52:13608; MR 55:7901
  • 6. J.B. Rosser, L. Schoenfeld: Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR 25:1139

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11A07, 11A25, 11D09

Retrieve articles in all journals with MSC (2000): 11A07, 11A25, 11D09


Additional Information

Florian Luca
Affiliation: Mathematical Institute, Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
Address at time of publication: Instituto de Matemáticas de la UNAM, Campus Morelia, Apartado Postal 61-3 (Xangari), CP. 58 089, Morelia, Michoácan, Mexico
Email: luca@math.cas.cz, fluca@matmor.unam.mx

Michal Krizek
Affiliation: Mathematical Institute, Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
Email: krizek@math.cas.cz

DOI: https://doi.org/10.1090/S0002-9939-01-05929-9
Received by editor(s): November 16, 1999
Published electronically: January 17, 2001
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society