Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Einstein manifolds and contact geometry


Authors: Charles P. Boyer and Krzysztof Galicki
Journal: Proc. Amer. Math. Soc. 129 (2001), 2419-2430
MSC (2000): Primary 53C25
DOI: https://doi.org/10.1090/S0002-9939-01-05943-3
Published electronically: January 18, 2001
MathSciNet review: 1823927
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every K-contact Einstein manifold is Sasakian-Einstein and discuss several corollaries of this result.


References [Enhancements On Off] (What's this?)

  • [BM1] A. Banyaga and P. Molino, Géométrie des formes de contact complètement integrable de type torique, Séminaire Gaston Darboux, Montpelier, 1991-1992, 1-25. MR 94e:53029
  • [BM2] A. Banyaga and P. Molino, Complete Integrability in Contact Geometry, Pennsylvania State University preprint PM 197, 1996.
  • [Bes] A. L. Besse, Einstein Manifolds, Springer-Verlag, New York (1987). MR 88f:53087
  • [BG1] C. P. Boyer and K. Galicki, 3-Sasakian Manifolds, Surveys in Differential Geometry, VI; Essays on Einstein Manifolds, International Press 1999; C. LeBrun and M. Wang, Eds., pp. 123-184.
  • [BG2] C. P. Boyer and K. Galicki, On Sasakian-Einstein Geometry, preprint DG/981108, to appear in Int. J. Math.
  • [BG3] C. P. Boyer and K. Galicki, A Note on Toric Contact Geometry , The Journal of Geometry and Physics 35 (2000), 288-298.
  • [Bl] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics 509, Springer-Verlag, New York 1976. MR 57:7444
  • [BW] W.M. Boothby and H.C. Wang, On Contact Manifolds, Ann. of Math. 68 (1958), 721-734. MR 22:3015
  • [Car] Y. Carrière, Les propriétés topologiques des flots riemanniens retrouvées à l'aide du théorème des variétés presque plates, Math. Z. 186 (1984), 393-400. MR 86f:53048
  • [Gol] S.I. Goldberg, Integrability of almost Kaehler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96-100. MR 38:6514
  • [Gr] M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 213-307. MR 84h:53053
  • [Hat] Y. Hatakeyama, Some notes on differentiable manifolds with almost contact structures, Tôhuku Math. J. 15 (1963), 176-181. MR 27:705
  • [Hit] N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126. MR 89a:32021
  • [IY] H. Inoue and K. Yano, The Gromov invariant of negatively curved manifolds, Topology 21 (1981), 83-89. MR 82k:53091
  • [Jel] W. Jelonek, Positive and negative 3-K-contact structures, Proc. Amer. Math. Soc. (to appear).
  • [Kas] T. Kashiwada, On a contact 3-structure, preprint.
  • [LM] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Co., Dordrecht, 1987. MR 88c:58016
  • [Mol1] P. Molino, Riemannian Foliations, Progress in Mathematics 73, Birkhäuser, Boston, 1988. MR 89b:53054
  • [Mol2] P. Molino, Feuilletages riemanniens sur les variétés compactes; champs de Killing transverses, C.R. Ac. Sci. Paris Sér. A 289 (1979), 421-423. MR 80j:57026
  • [MoSe] P. Molino and Vlad Sergiescu, Deux remarques sur les flots riemanniens, Manus. Math. 51 (1985), 145-161. MR 86h:53035
  • [Rei1] B.L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132. MR 21:6004
  • [Rei2] B.L. Reinhart, Differential Geometry of Foliations, Springer-Verlag, New York, 1983. MR 85i:53038
  • [Ruk1] P. Rukimbira, Chern-Hamilton's conjecture and K-contactness, Hous. J. of Math. 21 (1995), 709-718. MR 96m:53032
  • [Ruk2] P. Rukimbira, The dimension of leaf closures of K-contact flows, Ann. Global Anal. and Geom. 12 (1994), 103-108. MR 95f:53072
  • [Sek1] K. Sekigawa, On some 4-dimensional compact Einstein almost Kähler manifolds, Math. Ann. 271 (1985), 333-337. MR 86g:53054
  • [Sek2] K. Sekigawa, On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677-684. MR 88j:53047
  • [Tan1] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tôhoku Math. J. 21 (1969), 21-38. MR 39:3428
  • [Tan2] S. Tanno, Geodesic flows on $C_{L}$-manifolds and Einstein metrics on $S^{3}\times S^{2}$, in Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977), pp. 283-292, North Holland, Amsterdam-New York, 1979. MR 81g:58027
  • [Tan3] S. Tanno, Remarks on a Triple of K-contact Structures, Tôhoku Math. J. 48 (1996), 519-531. MR 97i:53055
  • [Tho] C.B. Thomas, Almost regular contact manifolds, J. Differential Geom. 11 (1976), 521-533. MR 57:4195
  • [Ton] P. Tondeur, Geometry of Foliations, Birkhäuser, Boston, 1997. MR 98d:53037
  • [YK] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics 3, World Scientific Pub. Co., Singapore, 1984. MR 86g:53001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C25

Retrieve articles in all journals with MSC (2000): 53C25


Additional Information

Charles P. Boyer
Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
Email: cboyer@math.unm.edu

Krzysztof Galicki
Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
Email: galicki@math.unm.edu

DOI: https://doi.org/10.1090/S0002-9939-01-05943-3
Received by editor(s): December 16, 1999
Published electronically: January 18, 2001
Additional Notes: This work was partially supported by NSF grant DMS-9970904.
Communicated by: Christopher Croke
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society