THE FEFFERMAN-STEIN TYPE INEQUALITY
FOR THE KAKEYA MAXIMAL OPERATOR

HITOSHI TANAKA
(Communicated by Christopher D. Sogge)

Abstract. Let K_{δ}, $0 < \delta \ll 1$, be the Kakeya maximal operator defined as the supremum of averages over tubes of the eccentricity δ. We shall prove the so-called Fefferman-Stein type inequality for K_{δ},

$$
\|K_{\delta}f\|_{L^p(\mathbb{R}^d;w)} \leq C_{d,p}\left(\frac{1}{\delta}\right)^{d/p-1}\left(\log\left(\frac{1}{\delta}\right)\right)^{\alpha(d)}\|f\|_{L^p(\mathbb{R}^d,K_{\delta}w)} ,
$$

in the range $(1 < p \leq (d^2-2)/(2d-3))$, $d \geq 3$, with some constants $C_{d,p}$ and $\alpha(d)$ independent of f and the weight w.

1. Introduction

The purpose of this note is to investigate the so-called Fefferman-Stein type inequality for the Kakeya maximal operator. Throughout this note $0 < \delta \ll 1$ will be a small parameter. For f a locally integrable function on \mathbb{R}^d, $d \geq 2$, define

$$(K_{h,\delta}f)(x) = \sup_{T} \frac{1}{|T|} \int_{T} |f(y)|dy ,$$

where the supremum is taken over all tubes T containing $x \in \mathbb{R}^d$ with the length h and the radius of the cross section $h\delta$. We define the Kakeya maximal operator K_{δ} by

$$(K_{\delta}f)(x) = \sup_{h>0} (K_{h,\delta}f)(x) .$$

We call a non-negative Borel measurable function w a weight if it is a locally integrable function on \mathbb{R}^d. By $w(A)$ we mean the $w(x)dx$ measure of a set A.

It is verified for $d = 2$ that in the range $1 < p \leq d$ the Fefferman-Stein type inequality

$$(1.1) \quad \left(\int_{\mathbb{R}^d} (K_{\delta}f)(x)^p w(x)dx \right)^{1/p} \leq C_{d,p}\epsilon\left(\frac{1}{\delta}\right)^{d/p-1+\epsilon}\left(\int_{\mathbb{R}^d} |f(x)|^p(K_{\delta}w)(x)dx\right)^{1/p}$$

holds for all $\epsilon > 0$ (M"{u}ller and F. Solia, [MS]). But in higher dimensions this fact has been verified only in the range $1 < p \leq (d+1)/2$ (A. M. Vargas, [Va]). The main difficulty of this problem lies in making the exponent p as high as possible.

Bourgain proved that an unweighted version of (1.1) (putting $w \equiv 1$) holds in the range $1 < p \leq p_d$, where $(d+1)/2 < p_d < (d+2)/2$ is some exponent given by

Received by the editors December 15, 1999.
2000 Mathematics Subject Classification. Primary 42B25.
This work was supported by the Japan Society for the Promotion of Sciences and the Fujyukai Foundation.

\c 2001 American Mathematical Society

2373
a recursive formula starting from $p_3 = 7/3$ \[Bo1\]. Wolff improved this result \[Wo\]. He proved that an unweighted version of (1.1) holds in the range $1 < p \leq (d + 2)/2$. Recently, in higher dimensions Bourgain improved it further to $1 < p \leq (1/2 + c)d$ ($c > 0$ independent of d) \[Bo2\].

A different approach to this problem (an unweighted version) was given by Igari. He investigated the most difficult case $p = d$. He proved that an unweighted version of (1.1) holds for a special basis \[Ig\]. He restricted the bases for taking the supremum to only tubes T of which the axis intersects a fixed line. The author proved the weighted version of this restricted result \[Ta2\]. In this note we shall improve Vargas’s result by using this restricted estimates.

The main theorem of this note is the following.

Theorem 1. Let $d \geq 3$. There exist constants $C_{d,p}$ and $\alpha(d)$ independent of $\delta, f,$ and w such that

$$
\|K_\delta f\|_{L^p(\mathbb{R}^d,w)} \leq C_{d,p}(\frac{1}{\delta})^{d/p-1}(\log(\frac{1}{\delta}))^{\alpha(d)}\|f\|_{L^p(\mathbb{R}^d,K_\delta w)}
$$

holds in the range $1 < p \leq (d^2 - 2)/(2d - 3)$.

By using sieve arguments and three-points interpolation lemma our result can be reduced to the discrete analogue as stated in the following theorem. (See \[MS\], \[Va\], and also \[Ta2\].)

Let $Q = (-1/2,1/2)^d$ and $\hat{Q} = (-2,2)^d$. We divide \hat{Q} into δ-tubes, $Q_i, \text{centered at } i \in I$, where I is the set of lattice points with the δ-separation.

Theorem 2. Let $d \geq 3$. For a measurable set $A \subset Q$ and $0 < \lambda \leq 1$ define

$$I = \{i \in I \mid (K_1 R_A)(i) > \lambda \}.$$

Then

$$
\sum_{i \in I} w(Q_i) \leq C_d(\frac{1}{\delta})^{d-p(d)}(\frac{1}{\lambda})^{p(d)}(\log(\frac{1}{\delta}))^{\beta(d)}(K_\delta w)(A),
$$

where

$$p(d) = \frac{(d^2 - 2)}{(2d - 3)}$$

and

$$\beta(d) = \frac{(d+1)(d-2)}{(2d-3)}.$$

In the following C‘s will denote constants which may be different in each occasion but depend only on the dimension d.

2. **Proof of Theorem**

2.1. **Preliminaries.** We summarize some known results for later use.

Given any line L in \mathbb{R}^d define

$$(K_1^L f)(x) = \sup_T \frac{1}{|T|} \int_T |f(y)|dy,$$

where the supremum is taken over all δ-tubes T which contain x and of which the axis intersects L. Here, δ-tube is the tube with the length 1 and the radius of the cross section δ.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Lemma 3 (Theorem 2 in [Ta2]). Let $d \geq 3$. Let $\lambda > 0$ and L be any line in \mathbb{R}^d. Then
\[
\{x \in \mathbb{R}^d : (K^L_{1,\delta} f)(x) > \lambda\} \leq C\left(\frac{1}{\lambda}\right)^d (\log(\frac{1}{\delta}))^{d+1} \|f\|_{L^d(\mathbb{R}^d,d\omega)}.
\]

Let $B_{\leq 1/\delta}$ be the class of all rectangles in \mathbb{R}^d which satisfy
\[
1 \leq \text{(the length of longest sides)}/\text{(the length of shortest sides)} \leq \frac{1}{\delta}.
\]
The corresponding maximal operator associated to this base $B_{\leq 1/\delta}$ will be denoted by $K_{\leq 1/\delta}$.

Lemma 4 (Theorem 3 in [Ta1]). Let $d \geq 2$. There exist constants C_1 and C_2 depending only on d such that
\[
C_1(K_{\delta} f)(x) \leq (K_{\leq 1/\delta} f)(x) \leq C_2(K_{\delta} f)(x)
\]
holds for every $x \in \mathbb{R}^d$.

2.2. Main argument. Write $W = K_{\delta} w$. Fix $A \subset Q$ and $0 < \lambda \leq 1$. Recall $I = \{i \in \mathcal{I} : (K_{1,\delta} \chi_A)(i) > \lambda\}$. Then for every $i \in I$ we can select a δ-tube T_i, which contains i, such that
\[
|A \cap T_i| > C\delta^{d-1}\lambda.
\]
Then, it follows from (2.1) and the Schwarz inequality that
\[
(C\delta^{d-1}\lambda \sum_{i \in I} w(Q_i))^2
\leq (\sum_{i \in I} w(Q_i)|A \cap T_i|)^2 = (\int_A \sum_{i \in I} w(Q_i)\chi_{T_i})^2
\leq \left\{ \int_A (\sum_{i \in I} w(Q_i)\chi_{T_i})^2 W^{-1}\right\} W(A)
\leq \left\{ \sum_{i \in I} w(Q_i) \sum_{j \in I} w(Q_j) W^{-1}(T_i \cap T_j) \right\} W(A)
\leq \max_{i \in I} (\sum_{j \in I} w(Q_j) W^{-1}(T_i \cap T_j)) \cdot (\sum_{i \in I} w(Q_i)) W(A).
\]
Hence
\[
N^{-1} \sum_{i \in I} w(Q_i) \leq C\left(\frac{1}{\delta}\right)^{2(d-1)} \left(\frac{1}{\lambda}\right)^2 W(A),
\]
which corresponds to low multiplicity of Wolff (see the proof of Lemma 3.1 in [W0]), where
\[
N = \max_{i \in I} (\sum_{j \in I} w(Q_j) W^{-1}(T_i \cap T_j)).
\]
By the fact that $p(d) > 2$ and $\frac{1}{d} \geq 1$, we may assume that
\[
C\delta^{2(d-1)} \leq N.
\]
The following proposition, corresponding to high multiplicity of Wolff, will be proven later.
Proposition 5. With previous setup we have
\[
N \{ \sum_{i \in I} w(Q_i) \}^{(d-2)/(d-1)} \leq C \left(\frac{1}{\delta} \right)^{-d} \{ (\log \left(\frac{1}{\delta} \right) \}^{d+1} \left(\frac{1}{\lambda} \right)^d W(A) \}^{(d-2)/(d-1)}.
\]

Multiplying both sides of (2.2) and (2.4) together, we obtain the desired inequality (1.2).

2.3. Proof of Proposition 5. Take some \(i_0 \in I \) so that
\[
N = \sum_{j \in I} w(Q_j) W^{-1}(T_{i_0} \cap T_j).
\]
Let
\[
I_0 = \{ j \in I : T_{i_0} \cap T_j \neq \emptyset \}
\]
and
\[
s_0 = \inf_{y \in T_{i_0}} W(y).
\]

By the geometric observation of Córdoba [Co] one sees that
\[
|T_{i_0} \cap T_j| \leq C \frac{\delta^d}{\delta + \text{dist}(T_{i_0}, J)}.
\]
From (2.5)–(2.8) we have
\[
N \leq C(s_0)^{-1} \sum_{j \in I_0} w(Q_j) \frac{\delta^d}{\delta + \text{dist}(T_{i_0}, J)}.
\]

Define the subset of \(I_0 \) as
\[
\sigma_k = \{ j \in I_0 : (k-1)\delta \leq \text{dist}(T_{i_0}, j) < k\delta \}, \quad k = 1, 2, \ldots,
\]
and rewrite
\[
(s_0)^{-1} \sum_{j \in I_0} w(Q_j) \frac{\delta^d}{\delta + \text{dist}(T_{i_0}, J)} = (s_0)^{-1} \sum_k \sum_{j \in \sigma_k} w(Q_j) \frac{\delta^d}{\delta + \text{dist}(T_{i_0}, J)}.
\]
Then
\[
N \leq C(s_0)^{-1} \delta^{d-1} \sum_k \sum_{j \in \sigma_k} \frac{w(Q_j)}{k}.
\]

It follows for some \(k_0 \) to be specified later that
\[
\delta^{d-1} \sum_{k=1}^{k_0} \sum_{j \in \sigma_k} \frac{w(Q_j)}{k} = \delta^{d-1} \sum_{k=1}^{k_0} \sum_{j \in \sigma_k} w(Q_j) \left(\sum_{l=k}^{k_0} \frac{1}{l(l+1)} + \frac{1}{k_0+1} \right)
\]
\[
= \delta^{d-1} \sum_{k=1}^{k_0} \sum_{j \in \sigma_k} w(Q_j) \left(\sum_{l=k}^{k_0} \frac{1}{l(l+1)} \right) + \delta^{d-1} \sum_{k=1}^{k_0} \sum_{j \in \sigma_k} w(Q_j)
\]
\[
= I + II.
\]
By reversing the order of summation we have

\[I = \delta^{d-1} \sum_{l=1}^{k_0} \left(\sum_{k=1}^{l} \sum_{j \in \sigma_k} w(Q_j) / (l(l+1)) \right) \]

\[\leq C \delta^{2d-2} \sum_{l=1}^{k_0} l^{d-3} \left(\sum_{k=1}^{l} \sum_{j \in \sigma_k} w(Q_j) / ((l\delta)^{d-1}) \right). \]

By using Lemma 4 we see that

\[(s_0)^{-1} \left(\sum_{k=1}^{l} \sum_{j \in \sigma_k} w(Q_j) / ((l\delta)^{d-1}) \right) \leq C(s_0)^{-1} \frac{f_{R_l} w}{|R_l|} \leq C, \]

where

\[R_l = \{ x \in \mathbb{R}^d : \text{dist}(T_{i_0}, x) \leq l\delta \}. \]

Hence

\[(s_0)^{-1} I \leq C \delta^{2d-2} \sum_{l=1}^{k_0} l^{d-3} \leq C \delta^d (k_0 \delta)^{d-2}. \]

Combining these inequalities we obtain

\[N \leq C \delta^d \{(k_0 \delta)^{d-2} + (k_0 \delta)^{-1} (s_0)^{-1} \sum_{j \in I_0} w(Q_j) \}. \]

Now, we can choose some \(k_0 \) so that

\[(k_0 \delta)^{d-1} \sim (s_0)^{-1} \sum_{j \in I_0} w(Q_j) \]

by (2.3) and (2.10). Then the two terms in the right-hand side of (2.11) balance and hence

\[N \leq C \delta^d \left\{ (s_0)^{-1} \sum_{j \in I_0} w(Q_j) \right\}^{(d-2)/(d-1)}. \]

Applying Lemma 3 with \(L = \) the axis of \(T_{i_0} \) and \(f = \chi_A \), we clearly obtain

\[\sum_{j \in I_0} w(Q_j) \leq C \left(\frac{1}{\lambda} \right)^d (\log \frac{1}{\lambda})^{d+1} W(A). \]

Thus, from (2.12) and (2.13) we have

\[N (s_0)^{(d-2)/(d-1)} \leq C \delta^d \left\{ \left(\frac{1}{\lambda} \right)^d (\log \frac{1}{\lambda})^{d+1} W(A) \right\}^{(d-2)/(d-1)}. \]

Finally, again by Lemma 3 we observe that

\[\sum_{i \in I} w(Q_i) \leq C \frac{w(Q)}{|Q|} \leq C' s_0. \]

Thus, from (2.14) and (2.15) we obtain

\[N \left\{ \sum_{j \in I} w(Q_j) \right\}^{(d-2)/(d-1)} \leq C \delta^d \left\{ \left(\frac{1}{\lambda} \right)^d (\log \frac{1}{\lambda})^{d+1} W(A) \right\}^{(d-2)/(d-1)}. \]
References

Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

E-mail address: hitoshi.tanaka@gakushuin.ac.jp