On statistical limit points
Authors:
P. Kostyrko, M. Macaj, T. Salát and O. Strauch
Journal:
Proc. Amer. Math. Soc. 129 (2001), 26472654
MSC (2000):
Primary 40A05, 11K31, 11B05
Published electronically:
December 7, 2000
MathSciNet review:
1838788
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The set of all statistical limit points of a given sequence is characterized as an set. It is also characterized in terms of discontinuity points of distribution functions of .
 [BBK95]
Daniel
Berend, Michael
D. Boshernitzan, and Grigori
Kolesnik, Distribution modulo 1 of some oscillating sequences.
II, Israel J. Math. 92 (1995), no. 13,
125–147. MR 1357748
(96j:11105), http://dx.doi.org/10.1007/BF02762073
 [Fr93]
J.
A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187–1192. MR 1181163
(94e:40008), http://dx.doi.org/10.1090/S00029939199311811636
 [HR66]
H.
Halberstam and K.
F. Roth, Sequences. Vol. I, Clarendon Press, Oxford, 1966. MR 0210679
(35 #1565)
 [KN74]
L.
Kuipers and H.
Niederreiter, Uniform distribution of sequences,
WileyInterscience [John Wiley & Sons], New YorkLondonSydney, 1974.
Pure and Applied Mathematics. MR 0419394
(54 #7415)
 [My93]
G.
Myerson, A sampler of recent developments in the distribution of
sequences, Number theory with an emphasis on the Markoff spectrum
(Provo, UT, 1991), Lecture Notes in Pure and Appl. Math., vol. 147,
Dekker, New York, 1993, pp. 163–190. MR 1219333
(94a:11112)
 [Pa84]
D.
P. Parent, Exercises in number theory, Problem Books in
Mathematics, SpringerVerlag, New York, 1984. Coauthored by D. Barsky, F.
Bertrandias, G. Christol, A. Decomps, H. Delange, J.M. Deshouillers, K.
LamècheGérardin, J. Lagrange, J.L. Nicolas, M. Pathiaux, G.
Rauzy and M. Waldschmidt; With a preface by Ch. Pisot; Translated from the
French. MR
759342 (86f:11002)
 [Sch59]
I.
J. Schoenberg, The integrability of certain functions and related
summability methods., Amer. Math. Monthly 66 (1959),
361–375. MR 0104946
(21 #3696)
 [St95]
Oto
Strauch, Uniformly maldistributed sequences in a strict sense,
Monatsh. Math. 120 (1995), no. 2, 153–164. MR 1348367
(96g:11095), http://dx.doi.org/10.1007/BF01585915
 [St97]
O. STRAUCH, On set of distribution functions of a sequence. In: Proc. Conf. Analytic and Elementary Number Theory, In Honor of E. Hlawka's 80th Birthday, Vienna, July 1820, 1996, Universität Wien and Universität für Bodenkultur, (W. G. Nowak and J. Schoißengeier, eds.) Vienna, 1997, 214229.
 [BBK95]
 D. BEREND, M. D. BOSHERNITZAN, AND G. KOLESNIK, Distribution modulo of some oscillating sequences, II. Israel J. Math. 92 (1995), 125147. MR 96j:11105
 [Fr93]
 J. A. FRIDY, Statistical limit points. Proc. Amer. Math. Soc. 118 (1993), 11871192. MR 94e:40008
 [HR66]
 H. HALBERSTAM AND K. F. ROTH, Sequences, I. Clarendon Press, Oxford, 1966. MR 35:1565
 [KN74]
 L. KUIPERS AND H. NIEDERREITER, Uniform Distribution of Sequences. John Wiley & Sons, New York, 1974. MR 54:7415
 [My93]
 G. MYERSON, A sampler of recent developments in the distribution of sequences. Lect. Notes Pure Appl. Math. 147 (1993), 163190. MR 94a:11112
 [Pa84]
 D. P. PARENT, Exercises in Number Theory. Problem Books in Mathematics, SpringerVerlag, New York, Berlin, Heidelberg, Tokyo, 1984. MR 86f:11002
 [Sch59]
 I. J. SCHOENBERG, The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361375. MR 21:3696
 [St95]
 O. STRAUCH, Uniformly maldistributed sequences in a strict sense. Monatsh. Math. 120 (1995), 153164. MR 96g:11095
 [St97]
 O. STRAUCH, On set of distribution functions of a sequence. In: Proc. Conf. Analytic and Elementary Number Theory, In Honor of E. Hlawka's 80th Birthday, Vienna, July 1820, 1996, Universität Wien and Universität für Bodenkultur, (W. G. Nowak and J. Schoißengeier, eds.) Vienna, 1997, 214229.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
40A05,
11K31,
11B05
Retrieve articles in all journals
with MSC (2000):
40A05,
11K31,
11B05
Additional Information
P. Kostyrko
Affiliation:
Department of Mathematics, Comenius University, SK842 15 Bratislava, Slovakia
Email:
kostyrko@fmph.uniba.sk
M. Macaj
Affiliation:
Department of Mathematics, Comenius University, SK842 15 Bratislava, Slovakia
Email:
macaj@fmph.uniba.sk
T. Salát
Affiliation:
Department of Mathematics, Comenius University, SK842 15 Bratislava, Slovakia
O. Strauch
Affiliation:
Mathematical Institute of the Slovak Academy of Sciences, Štefánikova 49, SK814 73 Bratislava, Slovakia
Email:
strauch@mat.savba.sk
DOI:
http://dx.doi.org/10.1090/S0002993900058913
PII:
S 00029939(00)058913
Keywords:
Statistically convergent sequence,
statistical limit point,
asymptotic density,
distribution function
Received by editor(s):
December 12, 1998
Received by editor(s) in revised form:
January 10, 2000
Published electronically:
December 7, 2000
Additional Notes:
This work was supported in part by grants from VEGA No. 2/5123/98 and No. 1/4323/97
Communicated by:
David Preiss
Article copyright:
© Copyright 2000
American Mathematical Society
