Integral closure of a cubic extension and applications
Author:
ShengLi Tan
Journal:
Proc. Amer. Math. Soc. 129 (2001), 25532562
MSC (2000):
Primary 13B22, 14F05, 14E20
Published electronically:
February 9, 2001
MathSciNet review:
1838377
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we compute the integral closure of a cubic extension over a Noetherian unique factorization domain. We also present some applications to triple coverings and to rank two reflexive sheaves over an algebraic variety.
 [Ha1]
Robin
Hartshorne, Algebraic geometry, SpringerVerlag, New
YorkHeidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
(57 #3116)
 [Ha2]
Robin
Hartshorne, Algebraic vector bundles on projective spaces: a
problem list, Topology 18 (1979), no. 2,
117–128. MR
544153 (81m:14014), http://dx.doi.org/10.1016/00409383(79)900302
 [Ha3]
Robin
Hartshorne, Stable reflexive sheaves, Math. Ann.
254 (1980), no. 2, 121–176. MR 597077
(82b:14011), http://dx.doi.org/10.1007/BF01467074
 [Kap]
Kaplansky, I., Commutative Algebra, W. A. Benjamin Inc., New York, 1970.
 [Lan]
Serge
Lang, Old and new conjectured Diophantine
inequalities, Bull. Amer. Math. Soc. (N.S.)
23 (1990), no. 1,
37–75. MR
1005184 (90k:11032), http://dx.doi.org/10.1090/S027309791990158999
 [Laz]
Robert
Lazarsfeld, A Barthtype theorem for branched coverings of
projective space, Math. Ann. 249 (1980), no. 2,
153–162. MR
578722 (81g:14007), http://dx.doi.org/10.1007/BF01351412
 [Mir]
Rick
Miranda, Triple covers in algebraic geometry, Amer. J. Math.
107 (1985), no. 5, 1123–1158. MR 805807
(86k:14008), http://dx.doi.org/10.2307/2374349
 [Qui]
Daniel
Quillen, Projective modules over polynomial rings, Invent.
Math. 36 (1976), 167–171. MR 0427303
(55 #337)
 [ShS]
Harold
N. Shapiro and Gerson
H. Sparer, Minimal bases for cubic fields, Comm. Pure Appl.
Math. 44 (1991), no. 89, 1121–1136. MR 1127054
(92f:11147), http://dx.doi.org/10.1002/cpa.3160440821
 [Sto]
Gabriel
Stolzenberg, Constructive normalization of an
algebraic variety, Bull. Amer. Math. Soc.
74 (1968),
595–599. MR 0224602
(37 #201), http://dx.doi.org/10.1090/S000299041968120233
 [Sus]
Suslin, A. A., Projective modules over a polynomial ring are free, Soviet Math. Dokl. 17 (1976), 11601164.
 [Ta1]
Tan, S.L., CayleyBacharach property of an algebraic variety and Fujita's conjecture, J. of Algebraic Geometry 9 (2) (2000), 201222. CMP 2000:07
 [Ta2]
Tan, S.L., Triple coverings on smooth algebraic varieties, preprint 1999 (BarIlan University).
 [TaV]
Tan, S.L. and Viehweg, E., A note on CayleyBacharach property for vector bundles, in: Complex Analysis and Algebraic Geometry (ed: T. Peternell, F.O. Schreyer), de Gruyter (1999).
 [Vas]
Wolmer
V. Vasconcelos, Computing the integral closure of an
affine domain, Proc. Amer. Math. Soc.
113 (1991), no. 3,
633–638. MR 1055780
(92b:13013), http://dx.doi.org/10.1090/S00029939199110557806
 [Ha1]
 Hartshorne, R., Algebraic Geometry, Graduate Texts in Math., vol. 52, SpringerVerlag, New York, 1997. MR 57:3116
 [Ha2]
 Hartshorne, R., Algebraic vector bundles on projective space: a problem list, Topology 18 (1979), 117128. MR 81m:14014
 [Ha3]
 Hartshorne, R., Stable reflexive sheaves, Math. Ann. 254 (1980), 121176. MR 82b:14011
 [Kap]
 Kaplansky, I., Commutative Algebra, W. A. Benjamin Inc., New York, 1970.
 [Lan]
 Lang, S., Old and new conjectured Diophantine inequalities, Bull. Amer. Math. Soc. (N.S.) 23 (2) (1990), 3775. MR 90k:11032
 [Laz]
 Lazarsfeld, R., A Barthtype Theorem for branched coverings of projective space, Math. Ann. 249 (1980), 153162. MR 81g:14007
 [Mir]
 Miranda, R., Triple covers in algebraic geometry, Amer. J. Math. 107 (1985), 11231158. MR 86k:14008
 [Qui]
 Quillen, D., Projective modules over polynomial rings, Invent. Math. 36 (1997), 167171. MR 55:337
 [ShS]
 Shapiro, H. N. and Sparer, G. H., Minimal bases for cubic fields, Commun. Pure Appl. Math. 44 (1991), 11211136. MR 92f:11147
 [Sto]
 Stolzenberg, G., Constructive normalization of an algebraic variety, Bull. Amer. Math. Soc. 74 (1968), 595599. MR 37:201
 [Sus]
 Suslin, A. A., Projective modules over a polynomial ring are free, Soviet Math. Dokl. 17 (1976), 11601164.
 [Ta1]
 Tan, S.L., CayleyBacharach property of an algebraic variety and Fujita's conjecture, J. of Algebraic Geometry 9 (2) (2000), 201222. CMP 2000:07
 [Ta2]
 Tan, S.L., Triple coverings on smooth algebraic varieties, preprint 1999 (BarIlan University).
 [TaV]
 Tan, S.L. and Viehweg, E., A note on CayleyBacharach property for vector bundles, in: Complex Analysis and Algebraic Geometry (ed: T. Peternell, F.O. Schreyer), de Gruyter (1999).
 [Vas]
 Vasconcelos, W. V., Computing the integral closure of an affine domain, Proc. Amer. Math. Soc. 113 (1991), 633638. MR 92b:13013
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
13B22,
14F05,
14E20
Retrieve articles in all journals
with MSC (2000):
13B22,
14F05,
14E20
Additional Information
ShengLi Tan
Affiliation:
Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China
Email:
sltan@math.ecnu.edu.cn
DOI:
http://dx.doi.org/10.1090/S0002993901059020
PII:
S 00029939(01)059020
Keywords:
Cubic extension,
integral closure,
covering,
vector bundle
Received by editor(s):
October 18, 1999
Received by editor(s) in revised form:
January 22, 2000
Published electronically:
February 9, 2001
Additional Notes:
This work is partially supported by the Kort Foundation and the Emmy Noether Research Institute for Mathematics. This research is also supported by NSFOY, the 973 Project Foundation and the Doctoral Program Foundation of EMC
Communicated by:
Wolmer V. Vasconcelos
Article copyright:
© Copyright 2001
American Mathematical Society
