Integral closure of a cubic extension and applications

Author:
Sheng-Li Tan

Journal:
Proc. Amer. Math. Soc. **129** (2001), 2553-2562

MSC (2000):
Primary 13B22, 14F05, 14E20

DOI:
https://doi.org/10.1090/S0002-9939-01-05902-0

Published electronically:
February 9, 2001

MathSciNet review:
1838377

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we compute the integral closure of a cubic extension over a Noetherian unique factorization domain. We also present some applications to triple coverings and to rank two reflexive sheaves over an algebraic variety.

**[Ha1]**Hartshorne, R.,*Algebraic Geometry*, Graduate Texts in Math., vol. 52, Springer-Verlag, New York, 1997. MR**57:3116****[Ha2]**Hartshorne, R.,*Algebraic vector bundles on projective space: a problem list*, Topology**18**(1979), 117-128. MR**81m:14014****[Ha3]**Hartshorne, R.,*Stable reflexive sheaves*, Math. Ann.**254**(1980), 121-176. MR**82b:14011****[Kap]**Kaplansky, I.,*Commutative Algebra*, W. A. Benjamin Inc., New York, 1970.**[Lan]**Lang, S.,*Old and new conjectured Diophantine inequalities*, Bull. Amer. Math. Soc. (N.S.)**23**(2) (1990), 37-75. MR**90k:11032****[Laz]**Lazarsfeld, R.,*A Barth-type Theorem for branched coverings of projective space*, Math. Ann.**249**(1980), 153-162. MR**81g:14007****[Mir]**Miranda, R.,*Triple covers in algebraic geometry*, Amer. J. Math.**107**(1985), 1123-1158. MR**86k:14008****[Qui]**Quillen, D.,*Projective modules over polynomial rings*, Invent. Math.**36**(1997), 167-171. MR**55:337****[ShS]**Shapiro, H. N. and Sparer, G. H.,*Minimal bases for cubic fields*, Commun. Pure Appl. Math.**44**(1991), 1121-1136. MR**92f:11147****[Sto]**Stolzenberg, G.,*Constructive normalization of an algebraic variety*, Bull. Amer. Math. Soc.**74**(1968), 595-599. MR**37:201****[Sus]**Suslin, A. A.,*Projective modules over a polynomial ring are free*, Soviet Math. Dokl.**17**(1976), 1160-1164.**[Ta1]**Tan, S.-L.,*Cayley-Bacharach property of an algebraic variety and Fujita's conjecture*, J. of Algebraic Geometry**9**(2) (2000), 201-222. CMP**2000:07****[Ta2]**Tan, S.-L.,*Triple coverings on smooth algebraic varieties*, preprint 1999 (Bar-Ilan University).**[TaV]**Tan, S.-L. and Viehweg, E.,*A note on Cayley-Bacharach property for vector bundles*, in: Complex Analysis and Algebraic Geometry (ed: T. Peternell, F.-O. Schreyer), de Gruyter (1999).**[Vas]**Vasconcelos, W. V.,*Computing the integral closure of an affine domain*, Proc. Amer. Math. Soc.**113**(1991), 633-638. MR**92b:13013**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
13B22,
14F05,
14E20

Retrieve articles in all journals with MSC (2000): 13B22, 14F05, 14E20

Additional Information

**Sheng-Li Tan**

Affiliation:
Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China

Email:
sltan@math.ecnu.edu.cn

DOI:
https://doi.org/10.1090/S0002-9939-01-05902-0

Keywords:
Cubic extension,
integral closure,
covering,
vector bundle

Received by editor(s):
October 18, 1999

Received by editor(s) in revised form:
January 22, 2000

Published electronically:
February 9, 2001

Additional Notes:
This work is partially supported by the Kort Foundation and the Emmy Noether Research Institute for Mathematics. This research is also supported by NSFOY, the 973 Project Foundation and the Doctoral Program Foundation of EMC

Communicated by:
Wolmer V. Vasconcelos

Article copyright:
© Copyright 2001
American Mathematical Society