Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Comparison of 4-class ranks of certain quadratic fields


Author: Frank Gerth III
Journal: Proc. Amer. Math. Soc. 129 (2001), 2547-2552
MSC (2000): Primary 11R11, 11R29, 11R45
DOI: https://doi.org/10.1090/S0002-9939-01-05922-6
Published electronically: January 23, 2001
MathSciNet review: 1838376
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $m$ be a square-free positive integer. Let $r_{4}(K)$ denote the 4-class rank of a quadratic field $K$. This paper examines how likely it is for $r_{4}(\mathbb{Q} (\sqrt {-m}\,)) =r_{4} (\mathbb{Q} (\sqrt {m}\,))$ and for $r_{4} (\mathbb{Q} (\sqrt {-m}\,)) = r_{4} (\mathbb{Q} (\sqrt {m}\,)) +1$.


References [Enhancements On Off] (What's this?)

  • 1. J. Cremona and R. Odoni, Some density results for negative Pell equations; an application of graph theory, J. London Math. Soc. 39 (1989), 16-28. MR 90b:11019
  • 2. P. Damey and J. Payan, Existence et construction des extensions galoisiennes et non-abéliennes de degré 8 d'un corps de caractéristique différente de 2, J. Reine Angew. Math. 244 (1970), 37-54. MR 43:6186
  • 3. F. Gerth, Counting certain number fields with prescribed $\ell $-class numbers, J. Reine Angew. Math. 337 (1982), 195-207. MR 84c:12002
  • 4. F. Gerth, The 4-class ranks of quadratic fields, Invent. Math. 77 (1984), 489-515. MR 85j:11137
  • 5. F. Gerth, Densities for ranks of certain parts of $p$-class groups, Proc. Amer. Math. Soc. 99 (1987), 1-8. MR 88b:11067
  • 6. F. Halter-Koch, Über den 4-Rank der Klassengruppe quadratischer Zahlkörper, J. Number Theory 19 (1984), 219-227. MR 86a:11041

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11R11, 11R29, 11R45

Retrieve articles in all journals with MSC (2000): 11R11, 11R29, 11R45


Additional Information

Frank Gerth III
Affiliation: Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712-1082
Email: gerth@math.utexas.edu

DOI: https://doi.org/10.1090/S0002-9939-01-05922-6
Received by editor(s): January 19, 2000
Published electronically: January 23, 2001
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society