Comparison of 4-class ranks of certain quadratic fields
Author:
Frank Gerth III
Journal:
Proc. Amer. Math. Soc. 129 (2001), 2547-2552
MSC (2000):
Primary 11R11, 11R29, 11R45
DOI:
https://doi.org/10.1090/S0002-9939-01-05922-6
Published electronically:
January 23, 2001
MathSciNet review:
1838376
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a square-free positive integer. Let
denote the 4-class rank of a quadratic field
. This paper examines how likely it is for
and for
.
- 1. J. Cremona and R. Odoni, Some density results for negative Pell equations; an application of graph theory, J. London Math. Soc. 39 (1989), 16-28. MR 90b:11019
- 2. P. Damey and J. Payan, Existence et construction des extensions galoisiennes et non-abéliennes de degré 8 d'un corps de caractéristique différente de 2, J. Reine Angew. Math. 244 (1970), 37-54. MR 43:6186
- 3.
F. Gerth, Counting certain number fields with prescribed
-class numbers, J. Reine Angew. Math. 337 (1982), 195-207. MR 84c:12002
- 4. F. Gerth, The 4-class ranks of quadratic fields, Invent. Math. 77 (1984), 489-515. MR 85j:11137
- 5.
F. Gerth, Densities for ranks of certain parts of
-class groups, Proc. Amer. Math. Soc. 99 (1987), 1-8. MR 88b:11067
- 6. F. Halter-Koch, Über den 4-Rank der Klassengruppe quadratischer Zahlkörper, J. Number Theory 19 (1984), 219-227. MR 86a:11041
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11R11, 11R29, 11R45
Retrieve articles in all journals with MSC (2000): 11R11, 11R29, 11R45
Additional Information
Frank Gerth III
Affiliation:
Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712-1082
Email:
gerth@math.utexas.edu
DOI:
https://doi.org/10.1090/S0002-9939-01-05922-6
Received by editor(s):
January 19, 2000
Published electronically:
January 23, 2001
Communicated by:
David E. Rohrlich
Article copyright:
© Copyright 2001
American Mathematical Society