Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On upper bounds of Chalk and Hua for exponential sums


Authors: Todd Cochrane and Zhiyong Zheng
Journal: Proc. Amer. Math. Soc. 129 (2001), 2505-2516
MSC (1991): Primary 11L07, 11L03
DOI: https://doi.org/10.1090/S0002-9939-01-06189-5
Published electronically: April 17, 2001
MathSciNet review: 1838371
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

Let $f$ be a polynomial of degree $d$ with integer coefficients, $p$ any prime, $m$ any positive integer and $S(f,p^m)$ the exponential sum $S(f,p^m)= \sum_{x=1}^{p^m} e_{p^m}(f(x))$. We establish that if $f$ is nonconstant when read $\pmod p$, then $\vert S(f,p^m)\vert\le 4.41 p^{m(1-\frac 1d)}$. Let $t=\text{ord}_p(f')$, let $\alpha$ be a zero of the congruence $p^{-t}f'(x) \equiv 0 \pmod p$ of multiplicity $\nu$ and let $S_\alpha(f,p^m)$ be the sum $S(f,p^m)$ with $x$ restricted to values congruent to $\alpha \pmod {p^m}$. We obtain $\vert S_\alpha (f,p^m)\vert \le \min \{\nu,3.06\} p^{\frac t{\nu+1}}p^{m(1-\frac 1{\nu+1})}$ for $p$ odd, $m \ge t+2$ and $d_p(f)\ge 1$. If, in addition, $p \ge (d-1)^{(2d)/(d-2)}$, then we obtain the sharp upper bound $\vert S_\alpha(f,p^m)\vert \le p^{m(1-\frac 1{\nu+1})}$.


References [Enhancements On Off] (What's this?)

  • 1. N.M. Akulinichev, Estimates for rational trigonometric sums of a special type, Doklady Acad. Sci. USSR 161 (1965), 743-745. English transl. in Doklady 161, no. 4 (1965), 480-482.
  • 2. J.H.H. Chalk, On Hua's estimate for exponential sums, Mathematika 34 (1987), 115-123. MR 89d:11067
  • 3. J.R. Chen, On the representation of natural numbers as a sum of terms of the form $x(x+1)\dots (x+k-1)/k!$, Acta Math. Sin. 8 (1958), 253-257.
  • 4. -, On Professor Hua's estimate of exponential sums, Sci. Sinica 20 (1977), 711-719. MR 58:542
  • 5. J.R. Chen and C. Pan, Analytic number theory in China I, in Number Theory and Its Applications in China, Contemp. Math. 77, Amer. Math. Soc. (1988), 1-17. MR 90c:11060
  • 6. T. Cochrane and Z. Zheng, Pure and mixed exponential sums, Acta Arithmetica 91, no. 3 (1999), 249-278. MR 2000k:11093
  • 7. -, Exponential sums with rational function entries, Acta Arithmetica 95, no. 1 (2000), 67-95. CMP 2001:02
  • 8. P. Ding, An improvement to Chalk's estimation of exponential sums, Acta Arith. 59 no. 2 (1991), 149-155. MR 93a:11069
  • 9. -, On a conjecture of Chalk, J. Number Theory 65 no. 2 (1997), 116-129. MR 98f:11086
  • 10. G.H. Hardy and J.E. Littlewood, Some problems of ``Partitio Numerorum"; I: A new solution of Waring's problem, Nachrichten von der K. Gesellschaft der Wissenschaften zu Göttingen Math.-phys. Klasse, (1920), 33-54.
  • 11. D.R. Heath-Brown and S. Konyagin, New bounds for Gauss sums derived from kth powers, and for Heilbronn's exponential sum, Quart. J. Math. 51 (2000), 221-235. CMP 2000:14
  • 12. L.K. Hua, On exponential sums, J. Chinese Math. Soc. 20 (1940), 301-312. MR 2:347h
  • 13. -, On exponential sums, Sci. Record (Peking) (N.S.) 1 (1957), 1-4. MR 20:22
  • 14. -, Additiv Primzahltheorie, Teubner, Leipzig (1959), 2-7.
  • 15. M.N. Huxley, A note on polynomial congruences, Recent Progress in Analytic Number Theory, Vol. 1 (H. Halberstam and C. Hooley, eds.), Academic Press, London, 1981, 193-196. MR 83e:10005
  • 16. A.A. Karatsuba, On bounds of complete trigonometrical sums, Matem. Zametki 1 no. 2 (1967), 199-208. English transl. in Math. Notes. Acad. Sci. USSR 1 (1967), 133-139.
  • 17. S.V. Konyagin, Estimates for Gaussian sums and Waring's problem modulo a prime, Trudy Mat. Inst. Steklov 198 (1992), 111-124; translation in Proc. Steklov Inst. Math. 1994, 105-107. MR 96e:11122
  • 18. -, Exponential sums over multiplicative groups of residues, preprint, (2000).
  • 19. S.V. Konyagin and I.E. Shparlinski, On the distribution of residues of finitely generated multiplicative groups and their applications, Macquarie Mathematics Reports, Macquarie University, 1995.
  • 20. -, Character sums with exponential functions and their applications, Cambridge Univ. Press, Cambridge, 1999. MR 2000h:11089
  • 21. G. Lachaud, Bounds for exponential sums with invariant phase function, preprint.
  • 22. W.K.A. Loh, Hua's Lemma, Bull. Austral. Math. Soc. 50, no. 3 (1994), 451-458. MR 95i:11091
  • 23. J.H. Loxton and R.A. Smith, On Hua's estimate for exponential sums, J. London Math. Soc. (2), 26 (1982), 15-20. MR 84c:10033
  • 24. J.H. Loxton and R.C. Vaughan, The estimation of complete exponential sums, Canad. Math. Bull. 28 no. 4 (1985), 442-454. MR 87c:11075
  • 25. M. Lu, A note on the estimate of a complete rational trigonometric sum, Acta Math. Sin. 27 (1984), 817-823. MR 87a:11075
  • 26. -, The estimate of complete trigonometric sums, Sci. Sin. 28, no. 6, (1985), 561-578. MR 87h:11078
  • 27. -, A note on complete trigonometric sums for prime powers, Sichuan Daxue Xuebao 26 (1989), 156-159. MR 91g:11090
  • 28. H.L. Montgomery, R.C. Vaughan and T.D. Wooley, Some remarks on Gauss sums associated with kth powers, Math. Proc. Cambridge Philos. Soc. 118, no. 1, (1995), 21-33. MR 96e:11110
  • 29. L.J. Mordell, On a sum analogous to a Gauss's sum, Quart. J. Math., 3 (1932), 161-167.
  • 30. G.L. Mullen and I.E. Shparlinski, Open problems and conjectures in finite fields, in Finite Fields and Applications (Glasgow, 1995), London Math. Soc. Lecture Note Series, No. 233, S. Cohen and H. Niederreiter, eds., Cambridge University Press, Cambridge, 1996, 243-268. MR 97m:11145
  • 31. V.I. Necaev, An estimate of a complete rational trigonometric sum, Mat. Zametki 17 (1975), 839-849; English translation in Math. Notes 17 (1975). MR 53:5501
  • 32. -, On the least upper bound on the modulus of complete trigonometric sums of degrees three and four, Investigations in number theory (Russian), Saratov. Gos. Univ., Saratov, (1988), 71-76. MR 91f:11059
  • 33. V.I. Necaev and V.L. Topunov, Estimation of the modulus of complete rational trigonometric sums of degree three and four, Trudy Mat. Inst. Steklov, 158 (1981), 125-129; English translation in Proceedings of the Steklov Institute of Mathematics 1983, no. 4, Analytic number theory, mathematical analysis and their applications, Amer. Math. Soc., 135-140. MR 83i:10048
  • 34. M. Qi and P. Ding, Estimate of complete trigonometric sums, Kexue Tongbao 29 (1984), 1567-1569. MR 87b:11082a
  • 35. -, On estimate of complete trigonometric sums, China Ann. Math. B6 (1985), 110-120. MR 87b:11082b
  • 36. -, Further estimate of complete trigonometric sums, J. Tsinghua Univ. 29, no. 6, (1989), 74-85. MR 91m:11061
  • 37. G. Sándor, Über die Anzahl der Lösungen einer Kongruenz, Acta Math. 87 (1952), 13-17. MR 13:913d
  • 38. W.M. Schmidt and C.L. Stewart, Congruences, trees and $p$-adic integers, Trans. Amer. Math. Soc. 349, no. 2, (1997), 605-639. MR 97e:11045
  • 39. I.E. Shparlinski, On bounds of Gaussian sums, Matem. Zametki, 50 (1991), 122-130 (in Russian).
  • 40. -, Computational and Algorithmic Problems in Finite Fields, Kluwer Academic Pub., Boston, (1992). MR 94j:11122
  • 41. -, On Gaussian sums for finite fields and elliptic curves, Proc. 1-st French-Soviet Workshop on Algebraic Coding, Paris, 1991, Lect. Notes in Computer Sci., 537 (1992), 5-15. MR 95c:11146
  • 42. R.A. Smith, Estimates for exponential sums, Proc. Amer. Math. Soc. 79, no. 3, (1980), 365-368. MR 81k:10059
  • 43. S.B. Steckin, Estimate of a complete rational trigonometric sum, Proc. Steklov Inst. 143 (1977), 188-220, English translation, A.M.S. Issue 1 (1980), 201-220. MR 58:543
  • 44. C.L. Stewart, On the number of solutions of polynomial congruences and Thue equations, J. Amer. Math. Soc. 4, no. 4, (1991), 793-835. MR 92j:11032
  • 45. R.C. Vaughan, The Hardy-Littlewood method, Cambridge Univ. Press, New York, (1981). MR 84b:10002
  • 46. A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207. MR 10:234e
  • 47. M. Zhang and Y. Hong, On the maximum modulus of complete trigonometric sums, Acta Math. Sinica, New Series 3, no. 4 (1987), 341-350. MR 89d:11068

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11L07, 11L03

Retrieve articles in all journals with MSC (1991): 11L07, 11L03


Additional Information

Todd Cochrane
Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
Email: cochrane@math.ksu.edu

Zhiyong Zheng
Affiliation: Department of Mathematics, Tsinghua University, Beijing, People’s Republic of China
Email: zzheng@math.tsinghua.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-01-06189-5
Keywords: Exponential sums
Received by editor(s): June 3, 1999
Published electronically: April 17, 2001
Additional Notes: The research of the second author was supported by the National Science Fund of The People’s Republic of China for Distinguished Young Scholars.
Communicated by: Dennis A. Hejhal
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society