Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Finite conductor rings

Author: Sarah Glaz
Journal: Proc. Amer. Math. Soc. 129 (2001), 2833-2843
MSC (2000): Primary 13A99, 13B25, 13D05, 13F15
Published electronically: December 7, 2000
MathSciNet review: 1840085
Full-text PDF

Abstract | References | Similar Articles | Additional Information


We extend the definition of a finite conductor domain to rings with zero divisors, and develop a theory of these rings which allows us, among other things, to provide examples of non-coherent finite conductor domains, and to clarify the behavior of non-coherent polynomial rings, group rings and fixed rings over coherent rings.

References [Enhancements On Off] (What's this?)

  • [A] B. Alfonsi, Grade non-Noetherian, Comm. in Algebra 9 (1981), 811-840. MR 82j:13012
  • [AA] D. D. Anderson and D. F. Anderson, Generalized GCD domains, Comment. Math. Univ. St. Pauli 28 (1980), 215-221. MR 81j:13017
  • [BAD] V. Barucci, D. F. Anderson and D. Dobbs, Coherent Mori domains and the principal ideal theorem, Comm. in Algebra 15 (1987), 1119-1156. MR 88c:13015
  • [B] G. M. Bergman, Groups acting on hereditary rings, Proc. London Math. Soc. 23 (1971), 70-82. MR 45:293
  • [DP] D. Dobbs and I. Papick, When is $D+M$ coherent? Proc. AMS 56 (1976), 51-54. MR 53:13203
  • [GH] S. Gabelli and E. Houston, Coherent-like conditions in pullbacks, Mich. Math. J. 44 (1997), 99-123. MR 98d:13019
  • [G1] R. Gilmer, Multiplicative ideal theory, Queens Papers in Pure and Appl. Math. 12, 1968. MR 37:5198
  • [G2] R. Gilmer, A two dimensional non-Noetherian factorial ring, Proc. AMS 44 (1974), 25-30. MR 49:281
  • [GP] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Mich. Math. J. 21 (1974), 65-86. MR 49:7381
  • [G3] S. Glaz, On the weak dimension of coherent group rings, Comm. in Algebra 15 (1987), 1841-1858. MR 88g:16024
  • [G4] S. Glaz, Factoriality and finiteness properties of subalgebras over which $k[x_1,\dotsc,x_n]$ is faithfully flat, Comm. in Algebra 16 (1988), 1791-1811. MR 89e:13008
  • [G5] S. Glaz, Commutative coherent rings, Springer-Verlag Lecture Notes in Math. 1371, 1989. MR 90f:13001
  • [G6] S. Glaz, On the coherence and weak dimensions of the rings $R\langle x\rangle$ and $R(x)$, Proc. AMS 106 (1989), 579-598. MR 89k:13018
  • [G7] S. Glaz, Fixed rings of coherent regular rings, Comm. in Algebra 20 (1992), 2635-2651. MR 93j:13007
  • [HL1] W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J. of Algebra 72 (1981), 101-114. MR 83h:13025
  • [HL2] W. Heinzer and D. Lantz, Commutative rings with ACC on $n$-generated ideals, J. of Algebra 80 (1983), 261-278. MR 84g:13030
  • [J] S. Jondrup, Groups acting on rings, J. London Math. Soc. 8 (1974), 483-486. MR 49:10679
  • [M] E. Matlis, The minimal spectrum of a reduced ring, Ill. J. of Math. 27 (1983), 353-391. MR 84h:13010
  • [MZ] J. Mott and M. Zafrullah, On Prufer $v$-multiplication domains, Manuscripta Math. 35 (1981), 1-26. MR 83d:13026
  • [N] K. Nagarajan, Groups acting on Noetherian rings, Nieuw Arch. voor Wisk. 16 (1968), 25-29. MR 37:5202
  • [Q1] Y. Quentel, Sur la compacité du spectre minimal d'un anneau, Bull. Soc. Math. France 99 (1971), 265-272. MR 44:6685
  • [Q2] Y. Quentel, Erratum, Sur la compacité du spectre minimal d'un anneau, Bull. Soc. Math. France 100 (1972), 461. MR 47:8512
  • [Q3] J. Querre, Idéaux divisoriels d'un anneau de polynomes, J. of Algebra 64 (1980), 270-284. MR 83b:13007
  • [S] J.-P. Soublin, Un anneau cohérent dont l'anneau de polynomes n'est pas cohérent, C. R. Acad. Sc. Paris, Ser. A 267 (1968), A241-A243. MR 38:1123
  • [V1] W. V. Vasconcelos, Divisor theory in module categories, North-Holland Math. Studies 14, 1974. MR 58:16637
  • [V2] W. Vasconcelos, The rings of dimension two, Lecture Notes in Pure and Appl. Math. 22, Marcel Dekker, 1976. MR 55:324

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13A99, 13B25, 13D05, 13F15

Retrieve articles in all journals with MSC (2000): 13A99, 13B25, 13D05, 13F15

Additional Information

Sarah Glaz
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269

Keywords: Finite conductor, coherence, quasi coherence, G-GCD rings
Received by editor(s): November 8, 1999
Received by editor(s) in revised form: February 18, 2000
Published electronically: December 7, 2000
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society