CONDITIONAL WEAK COMPACTNESS
IN VECTOR-VALUED FUNCTION SPACES

MARIAN NOWAK

(Communicated by Dale Alspach)

ABSTRACT. Let E be an ideal of L^0 over a σ-finite measure space (Ω, Σ, μ) and let E' be the Köthe dual of E with $\text{supp} E' = \Omega$. Let $(X, \| \cdot \|_X)$ be a real Banach space, and X^* the topological dual of X. Let $E(X)$ be a subspace of the space $L^0(X)$ of equivalence classes of strongly measurable functions $f : \Omega \to X$ and consisting of all those $f \in L^0(X)$ for which the scalar function $\| f(\cdot) \|_X$ belongs to E. For a subset H of $E(X)$ for which the set $\{ \| f(\cdot) \|_X : f \in H \}$ is $\sigma(E, E')$-bounded the following statement is equivalent to conditional $\sigma(E(X), E'(X^*))$-compactness: the set $\{ \| f(\cdot) \|_X : f \in H \}$ is conditionally $\sigma(E, E')$-compact and $\{ \int_A f(\omega) d\mu : f \in H \}$ is a conditionally weakly compact subset of X for each $A \in \Sigma$, $\mu(A) < \infty$ with $\chi_A \in E'$. Applications to Orlicz-Bochner spaces are given.

1. Introduction and preliminaries

Given a dual pair (L, K), a subset A of L is said to be conditionally $\sigma(L, K)$-compact whenever each sequence in A contains a $\sigma(L, K)$-Cauchy subsequence (cf. [MN] p. 100). The problem of characterizing relatively sequentially $\sigma(L^p(X), L^q(X^*))$-compact subsets of Lebesgue-Bochner spaces $L^p(X)$ (where $1 \leq p < \infty$ and q conjugate to p) over a finite measure space was considered by F. Bombal [B1] and J. Batt and W. Hiermeyer [BH, Theorem 2.1]. Moreover, F. Bombal characterized relatively sequentially $\sigma(L^p(X), L^{q'}(X^*))$-compact subsets of Orlicz-Bochner spaces $L^{q'}(X)$ [B2, Theorem 3]. C. Abott, E. Bator, R. Bilyeu and P. Lewis [ABBL] obtained the following characterization of conditionally $\sigma(L^1(X), L^{\infty}(X^*))$-compact subsets of $L^1(X)$.

Theorem 1.1 (cf. [ABBL, Theorem 2.5]). Let (Ω, Σ, μ) be a finite measure space. Then for a norm bounded subset H of $L^1(X)$ the following statements are equivalent:

(i) H is conditionally $\sigma(L^1(X), L^{\infty}(X^*))$-compact.

(ii) a) The subset $\{ \| f(\cdot) \|_X : f \in H \}$ of L^1 is uniformly integrable.

b) The set $\{ \int_A f(\omega) d\mu : f \in H \}$ is conditionally weakly compact in X for each

$A \in \Sigma$.

In this paper, by making use of Theorem 1.1 we characterize conditionally $\sigma(E(X), E'(X^*))$-compact subsets of $E(X)$, where E is an ideal of L^0 over a σ-finite measure space.

Received by the editors July 6, 1998 and, in revised form, February 14, 2000.

2000 Mathematics Subject Classification. Primary 46B25, 46E40.

Key words and phrases. Conditional weak compactness, vector valued function spaces.
Now we establish notation and terminology (see [AB], [KA]).

Let (Ω, Σ, μ) be a complete σ-finite measure space and let L^0 denote the space of equivalence classes of all Σ-measurable functions defined and finite a.e. on Ω. Let χ_A stand for the characteristic function of a set A and let \mathbb{N} denote the set of all natural numbers. Let E be an ideal of L^0 with $\text{supp } E = \Omega$, and let E' stand for the Köthe dual of E, i.e.,

$$E' = \{ v \in L^0 : \int_{\Omega} |u(\omega)v(\omega)|d\mu < \infty \text{ for all } u \in E \}.$$

We assume that $\text{supp } E' = \Omega$.

Let $(X, \| \cdot \|_X)$ be a real Banach space, and let S_X and B_X denote the unit sphere and the closed unit ball in X, resp. Let X^* stand for the Banach dual of X. By $L^0(X)$ we denote the set of equivalence classes of all strongly Σ-measurable functions $f : \Omega \to X$. For $f \in L^0(X)$ let us set $\bar{f}(\omega) = \|f(\omega)\|_X$ for $\omega \in \Omega$. Let

$$E(X) = \{ f \in L^0(X) : \bar{f} \in E \}.$$

By $\sigma(E(X), E'(X^*))$ we will denote the weak topology on $E(X)$ with respect to the dual system $\langle E(X), E'(X^*) \rangle$ under the natural duality $\langle f, g \rangle = \int_{\Omega} \bar{f}(\omega)g(\omega)d\mu$ for $f \in E(X), g \in E'(X^*)$.

The following characterization of conditional $\sigma(E, E')$-compactness is needed.

Proposition 1.2 ([N2] Theorem 1.1). For a $\sigma(E, E')$-bounded subset A of E the following statements are equivalent:

(i) A is conditionally $\sigma(E, E')$-compact.

(ii) For each $v \in E'$ the subset $\{uv : u \in A\}$ of L^1 is uniformly integrable.

(iii) The functional p_A on E' defined by $p_A(v) = \sup_{u \in A} \int_{\Omega} |u(\omega)v(\omega)|d\mu$ is an order continuous Riesz seminorm.

2. CONDITIONALLY $\sigma(E(X), E'(X^*))$-COMPACT SETS IN $E(X)$

Let $\text{ca}(\Omega, \Sigma)$ stand for the Riesz space of countably additive set functions ν on Σ. For a sequence (A_n) in Σ we write $A_n \searrow_{\mu} \emptyset$ whenever $A_n \downarrow$ and $\mu(\bigcap_{n=1}^{\infty} A_n) = 0$ (that is, $A_n \downarrow$ and $\mu(A_n \cap A) \to 0$ for each $A \in \Sigma$ with $\mu(A) < \infty$).

The following well-known result characterizes uniformly μ-continuous sets in $\text{ca}(\Omega, \Sigma)$.

Lemma 2.1. For a subset K of $\text{ca}(\Omega, \Sigma)^+$ the following statements are equivalent:

(i) K is uniformly μ-continuous (i.e., $\lim_{n \to \infty} (\sup_{\nu \in K} \nu(A_n)) = 0$ as $A_n \searrow_{\mu} \emptyset$).

(ii) For each $\eta > 0$ there exist $\delta > 0$ and $A_0 \in \Sigma$ with $\mu(A_0) < \infty$ such that $\nu(A) \leq \eta$ and $\nu(\Omega \setminus A_0) \leq \eta$ for all $A \in \Sigma$ with $\mu(A) \leq \delta$ and all $\nu \in K$.

We shall need the following technical result.

Proposition 2.2. Let K be a subset of $\text{ca}(\Omega, \Sigma)^+$ such that each $\nu \in K$ is μ-continuous. Assume that K is not uniformly μ-continuous. Then there exist a pairwise disjoint sequence (B_n) in Σ, a number $\varepsilon_0 > 0$ and a sequence (ν_n) in K such that $\nu_n(B_n) > \varepsilon_0$ for all $n \in \mathbb{N}$.
Proof. In view of Lemma 2.1 there exists \(\varepsilon_0 > 0 \) such that either there exist a sequence \((A_n)\) in \(\Sigma \) and a sequence \((\nu_n^1)\) in \(\mathcal{K} \) such that
\[
(1) \quad \mu(A_n) \to 0 \quad \text{and} \quad \nu_n^1(A_n) > 2\varepsilon_0
\]
or there exists a sequence \((\nu_n^2)\) in \(\mathcal{K} \) such that
\[
(2) \quad \nu_n^2(\Omega \setminus \Omega_n) > 2\varepsilon_0
\]
whenever \(\Omega_n \uparrow \Omega \) and \(\mu(\Omega_n) < \infty \) for \(n \in \mathbb{N} \).

Assume that condition (1) holds. Then arguing as in [BL, p. 546] one can find a pairwise disjoint sequence \((B_n)\) in \(\Sigma \) and a subsequence \((\nu_n^1)\) of \((\nu_n^1)\) such that
\[
\nu_n^1(B_n) \geq \varepsilon_0. \quad \text{Let } \nu_n = \nu_n^1 \quad \text{for } n \in \mathbb{N}.
\]
Now assume that condition (2) holds. Let \(\nu_n = \Omega \setminus \Omega_n \) for \(n \in \mathbb{N} \). Then \(\nu_n = \Omega_n \setminus \Omega_n \) for \(n \in \mathbb{N} \). Then \((B_n)\) is a disjoint sequence and since \(B_n = C_n \setminus C_{n+1}\) for \(n \in \mathbb{N} \), making use of (2) we obtain that \(\nu_n^2(B_n) = \nu_n^2(C_n) - \nu_n^2(C_{n+1}) > 2\varepsilon_0 - \varepsilon_0 = \varepsilon_0\). Put \(\nu_n = \nu_n^2 \) for \(n \in \mathbb{N} \).

For a subset \(H \) of \(E(X) \) let \(\tilde{H} = \{ f : f \in H \} \).

Now we are ready to state our main result.

Theorem 2.3. Let \(H \) be a subset of \(E(X) \) such that the subset \(\tilde{H} \) of \(E \) is \(\sigma(E, E') \)-bounded. Then the following statements are equivalent:
(i) \(H \) is conditionally \(\sigma(E, E') \)-compact.
(ii) a) \(\tilde{H} \) is conditionally \(\sigma(E, E') \)-compact.
b) \(\{ \int_A f(\omega) \nu d\mu : f \in H \} \) is a conditionally weakly compact subset of \(X \) for each \(A \in \Sigma, \mu(A) < \infty \) with \(\chi_A \in E' \).

Proof. (i) \(\Rightarrow \) (ii) To prove that (a) holds, in view of Proposition 1.2 it is enough to show that for each \(0 \leq v \in E' \) the subset \(\{ \tilde{f} v : f \in H \} \) of \(L^1 \) is uniformly integrable. Assume on the contrary that there exists \(0 \leq v_0 \in E' \) such that the set \(\{ \tilde{f} v_0 : f \in H \} \) is not uniformly integrable. For each \(f \in H \) set \(\nu_f(A) = \int_A \tilde{f} v_0 d\mu \) for \(A \in \Sigma \). Then \(\nu_f \) is a non-negative \(\mu \)-continuous countably additive set function on \(\Sigma \) but the family \(\{ \nu_f : f \in H \} \) is not uniformly \(\mu \)-continuous. Hence in view of Proposition 2.2 there exist a pairwise disjoint sequence \((B_n)\) in \(\Sigma \), a sequence \((f_n)\) in \(H \), and a number \(\varepsilon_0 > 0 \) such that \(\nu_f(B_n) = \int_{B_n} \tilde{f} v_0 d\mu > \varepsilon_0\) for each \(n \in \mathbb{N} \). Clearly \(v_0 f_n \in L^1(X) \), so in view of [BL, Theorem 1.1, (4)]
\[
\nu_f(B_n) = \| \chi_{B_n} v_0 \tilde{f} n \|_{L^1} = \| \chi_{B_n} v_0 f_n \|_{L^1(X)}
\]
\[
= \sup \left\{ \left| \int_{B_n} (v_0(\omega) f_n(\omega), g(\omega)) d\mu \right| : g \in L^\infty(X^*), \| g \|_{L^\infty(X^*)} \leq 1 \right\}.
\]
Hence one can produce a sequence \((g_n)\) in \(L^\infty(X^*) \) with \(\| g_n \|_{L^\infty(X^*)} \leq 1 \), \(\chi_{\Omega \setminus B_n} g_n = 0 \) and such that
\[
(1) \quad \int_{B_n} (v_0(\omega) f_n(\omega), g_n(\omega)) d\mu > \varepsilon_0.
\]
Set $g_0 = \sum_{n=1}^{\infty} g_n$. Then $g_0 \in L^0(X^*)$ and $\|g_0\|_{L^\infty(X^*)} \leq 1$. Clearly $v_0 g_0 \in E'(X^*)$, so $\chi_A v_0 g_0 \in E'(X^*)$ for each $A \in \Sigma$. In view of the assumption (i) there exists a $\sigma(E(X), E'(X^*))$-Cauchy subsequence (f_{k_n}) of (f_n) so for each $A \in \Sigma$, \(\lim_{n} \int_{A} (f_{k_n}(\omega), v_0(\omega)g_0(\omega))d\mu \) exists. Setting \(\mu_n(A) = \int_{A} (f_{k_n}(\omega), v_0(\omega)g_0(\omega))d\mu \) for $A \in \Sigma$, in view of Nikodym’s convergence theorem (see [D, Chap. 7]), $\{\mu_n: n \in \mathbb{N}\}$ is uniformly countably additive on Σ. Hence there exists $m_0 \in \mathbb{N}$ such that for $m \geq m_0$, $\sup |\mu_n(B_m)| \leq \varepsilon_0$ (see [D, Chap. 7, Theorem 10]). Hence for each $m \geq m_0$ we get

$$|\mu_m(B_{k_m})| = \left| \int_{B_{k_m}} (f_{k_m}(\omega), v_0(\omega)g_{k_m}(\omega))d\mu \right|$$

$$= \left| \int_{B_{k_m}} (v_0(\omega)f_{k_m}(\omega), g_{k_m}(\omega))d\mu \right| \leq \varepsilon_0$$

which contradicts (1). This contradiction establishes that (a) holds.

To show that (b) holds, take $A \in \Sigma$ with $\chi_A \in E'$, and let (f_n) be a sequence in H. Set $g = \chi_A x^*$ where $x^* \in S_{X^*}$. Then $g \in E'(X^*)$ and by assumption (i) there exists a subsequence (f_{k_n}) of (f_n) such that $\lim_{n} \int_{\Omega} (f_{k_n}(\omega), g(\omega))d\mu$ exists. Since $\int_{\Omega} (f_{k_n}(\omega), g(\omega))d\mu = x^* \left(\int_{A} f_{k_n}(\omega)d\mu \right)$, the set $\left\{ \int_{A} f(\omega)d\mu: f \in H \right\}$ is conditionally weakly compact in X.

(ii) \Rightarrow (i) Let (f_n) be a sequence in H. Since supp $E' = \Omega$ there exists a sequence (Ω_m) in Σ such that $\Omega_m \uparrow \Omega$ and $\mu(\Omega_m) < \infty$, $\chi_{\Omega_m} \in E'$ for $m \in \mathbb{N}$ (see [Z Theorem 86.2]). Setting $A_m = \Omega \setminus \Omega_m$ for $m \in \mathbb{N}$ we see that $A_m \searrow \emptyset$. Given $m \in \mathbb{N}$ we have $\sup_{\Omega_m} f_n(\omega)d\mu = c_m < \infty$, because $\chi_{\Omega_m} \in E'$ and H is $\sigma(E, E')$-bounded. Hence $\{\chi_{\Omega_m} f_n: n \in \mathbb{N}\} \subset L^1_{\Omega_m}(X)$, and by assumption $\sigma(A, \chi_{\Omega_m} f_n: n \in \mathbb{N})$ is a uniformly integrable subset of $L^1_{\Omega_m}(X)$. Combining this observation with (b), in view of Theorem 1.1 we see that $\{\chi_{\Omega_m} f_n: n \in \mathbb{N}\}$ is a conditionally $\sigma(L^1_{\Omega_m}(X), L^\infty_{\Omega_m}(X^*))$-compact subset of $L^1_{\Omega_m}(X)$.

In view of the above observation there exists a $\sigma(L^1_{\Omega_m}(X), L^\infty_{\Omega_m}(X^*))$-Cauchy subsequence $(\chi_{\Omega_k} f_{k_n})$ of $(\chi_{\Omega_k} f_n)$. Next, there exists a $\sigma(L^1_{\Omega_k}(X), L^\infty_{\Omega_k}(X^*))$-Cauchy subsequence $(\chi_{\Omega_k} f_{k_{n_k}})$ of $(\chi_{\Omega_k} f_{k_n})$. It follows that the diagonal sequence (f_{k_n}) has the property that for each $n \in \mathbb{N}$ $(\chi_{\Omega_n} f_{k_n})$ is a $\sigma(L^1_{\Omega_n}(X), L^\infty_{\Omega_n}(X^*))$-Cauchy sequence. Put $h_n = f_{k_n}$ for $n \in \mathbb{N}$.

Let $g \in E'(X^*)$. For $n \in \mathbb{N}$ let us put

$$g_n(\omega) = \begin{cases} g(\omega) & \text{if } \omega \in \Omega_n \text{ and } \|g(\omega)\|_{X^*} \leq n, \\ 0 & \text{elsewhere}. \end{cases}$$

Given $\varepsilon > 0$ there exist $m_0 \in \mathbb{N}$ and $\delta > 0$ such that

$$\sup_{n} \int_{\Omega \setminus \Omega_{m_0}} \bar{f}_n(\omega) \bar{g}(\omega)d\mu \leq \frac{\varepsilon}{4} \quad \text{and} \quad \sup_{n} \int_{A} \bar{f}_n(\omega) \bar{g}(\omega)d\mu \leq \frac{\varepsilon}{4}$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
for each $A \in \Sigma$ with $\mu(A) \leq \delta$. For $\eta = \frac{\varepsilon}{3m_0}$ let

$$B_n = \{ \omega \in \Omega_{m_0} : \|g(\omega) - g_n(\omega)\|_{X^*} \geq \eta \}.$$

It is easy to observe that $B_n \downarrow \emptyset$, so $\mu(B_n) \to 0$. Choose $n_0 \in \mathbb{N}$ with $n_0 \geq m_0$ such that $\mu(B_{n_0}) \leq \delta$. Then by (2) we get

$$\sup_{n} \int_{B_{n_0}} \tilde{h}_n(\omega) \tilde{g}(\omega) d\mu \leq \frac{\varepsilon}{4}. \tag{3}$$

Hence, by (3) we have

$$\left| \int_{\Omega_{m_0}} \langle h_n(\omega), g(\omega) - g_{n_0}(\omega) \rangle d\mu \right| \leq \int_{\Omega_{m_0}} \tilde{h}_n(\omega) \|g(\omega) - g_{n_0}(\omega)\|_{X^*} d\mu$$

$$\leq \int_{B_{n_0}} \tilde{h}_n(\omega) \|g(\omega) - g_{n_0}(\omega)\|_{X^*} d\mu + \int_{\Omega_{m_0} \setminus B_{n_0}} \tilde{h}_n(\omega) \|g(\omega) - g_{n_0}(\omega)\|_{X^*} d\mu$$

$$\leq \int_{B_{n_0}} \tilde{h}_n(\omega) \tilde{g}(\omega) d\mu + \eta \int_{\Omega_{m_0}} \tilde{h}_n(\omega) d\mu \leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2}. \tag{4}$$

Since $\int_{\Omega_{m_0}} \langle h_n(\omega), g_{n_0}(\omega) \rangle d\mu \to a$ for some $a \in \mathbb{R}$, we can choose $n_1 \in \mathbb{N}$ such that for $n \geq n_1$

$$\left| \int_{\Omega_{m_0}} \langle h_n(\omega), g_{n_0}(\omega) \rangle d\mu - a \right| \leq \frac{\varepsilon}{4}. \tag{5}$$

Thus by (2), (4) and (5) for $n \geq n_1$ we get

$$\left| \int_{\Omega} \langle h_n(\omega), g(\omega) \rangle d\mu - a \right|$$

$$\leq \left| \int_{\Omega \setminus \Omega_{m_0}} \langle h_n(\omega), g(\omega) \rangle d\mu \right| + \left| \int_{\Omega_{m_0}} \langle h_n(\omega), g(\omega) - g_{n_0}(\omega) \rangle d\mu \right|$$

$$+ \left| \int_{\Omega_{m_0}} \langle h_n(\omega), g_{n_0}(\omega) \rangle d\mu - a \right| \leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \varepsilon.$$

This shows that (h_n) is a $\sigma(E(X), E'(X^*))$-Cauchy subsequence of (f_n), so H is conditionally $\sigma(E(X), E'(X^*))$-compact. \hfill \Box

Corollary 2.4. Assume that a Banach space X contains no isomorphic copy of ℓ^1, and let H be a subset of $E(X)$ such that H is $\sigma(E, E^{'})$-bounded. Then the following statements are equivalent:

1. H is conditionally $\sigma(E(X), E'(X^*))$-compact.
2. \tilde{H} is conditionally $\sigma(E, E^{'})$-compact.

Proof. (i) \Rightarrow (ii) Obvious.

(ii) \Rightarrow (i) In view of Theorem 2.3 it is enough to show that $\left\{ \int_A f(\omega) d\mu : f \in H \right\}$ is a conditionally weakly compact subset of X for each $A \in \Sigma$ such that $\chi_A \in E'$. In fact, let $A \in \Sigma$, $\mu(A) < \infty$ with $\chi_A \in E'$. Hence $\sup_{f \in H} \| \int_A f(\omega) d\mu \| \leq \varepsilon$.
sup \int f(\omega) d\mu < \infty$, so in view of the Rosenthal’s \(\ell^1\)-theorem [R] \(\{\int f(\omega) d\mu : f \in H\}\) is a conditionally weakly compact subset of \(X\), as desired. \(\square\)

Assume now that \((E, \| \cdot \|_E)\) is a Banach function space. Then the space \(E(X)\) provided with the norm \(\|f\|_{E(X)} := \|f\|_E\) is usually called a Köthe-Bochner space. The associated norm \(\| \cdot \|_{E'}\) on the Köthe dual \(E'\) can be defined as follows:

\[
\|v\|_{E'} = \sup \left\{ \int u(\omega)v(\omega) d\mu : u \in E, \|u\|_E \leq 1 \right\}.
\]

Clearly, for a subset \(H\) of \(E(X)\) the set \(\tilde{H}\) is \(\sigma(E, E')\)-bounded whenever

\[
\sup_{f \in H} \|f\|_{E(X)} < \infty.
\]

Combining Corollary 2.4 and Proposition 1.2 we get:

Corollary 2.5. Let \((E, \| \cdot \|_E)\) be a Banach function space, and assume that \(X\) contains no isomorphic copy of \(\ell^1\). Then the following statements are equivalent:

(i) The associated norm \(\| \cdot \|_{E'}\) on \(E'\) is order continuous.

(ii) Every norm bounded set in \(E(X)\) is conditionally \(\sigma(E(X), E'(X^*))\)-compact.

We now apply the previous results to Orlicz spaces (see [KR], [L] for more details).

By a Young function we mean a mapping \(\varphi: [0, \infty) \to [0, \infty)\) that is convex, vanishes only at 0 and \(\varphi(t)/t \to 0\) as \(t \to \infty\). Let \(L^\varphi\) be the Orlicz space associated with \(\varphi\) and provided with the Luxemburg norm \(\|u\|_\varphi := \inf \{\lambda > 0 : \int \varphi(|u(\omega)|/\lambda) d\mu \leq 1\}\). Then \((L^\varphi)' = L^{\varphi^\ast}\), where \(\varphi^\ast\) denotes the complementary Young function.

We say that a Young function \(\varphi\) increases more rapidly than another \(\varphi',\) in symbols \(\varphi \prec \varphi',\) if for each \(c > 0\) there is \(d > 1\) such that \(c \varphi(t) \leq \frac{1}{d} \varphi'(dt)\) for all \(t \geq 0\) (see [N2]). Note that \(\varphi\) satisfies the \(\nabla_2\)-condition iff \(\varphi \prec \varphi\).

As a consequence of Corollary 2.4 and [N2] Theorem 2.5 we get:

Corollary 2.6. Assume that \(X\) contains no isomorphic copy of \(\ell^1\). Then for a norm bounded subset \(H\) of the Orlicz-Bochner space \(L^\varphi(X)\) the following statements are equivalent:

(i) \(H\) is conditionally \(\sigma(L^\varphi(X), L^{\varphi^\ast}(X^*))\)-compact.

(ii) There is a Young function \(\psi\) with \(\varphi \prec \psi\) and such that \(H \subseteq L^\psi(X)\) and

\[
\sup_{f \in H} \|f\|_{L^\psi(X)} < \infty.
\]

Corollary 2.7. Assume that \(X\) contains no isomorphic copy of \(\ell^1\) and \(\varphi\) satisfies the \(\nabla_2\)-condition. Then every norm bounded subset of \(L^\varphi(X)\) is conditionally \(\sigma(L^\varphi(X), L^{\varphi^\ast}(X^*))\)-compact.

References

[BH] J. Batt, W. Hiermeyer, *On compactness in $L_p(\mu, X)$ in the weak topology and in the topology $\sigma(L_p(\mu, X), L_q(\mu, X'))*, Math. Z., 182 (1983), 409-423. MR 84m:46039

INSTITUTE OF MATHEMATICS, T. KOTARBIŃSKI PEDAGOGICAL UNIVERSITY, PL. SŁOWIAŃSKI 9, 65-069 ZIELONA GÓRA, POLAND

E-mail address: mnowa@lord.wsp.zgora.pl