ON THE BEREZIN-TOEPLITZ CALCULUS

L. A. COBURN

(Communicated by Joseph A. Ball)

Abstract. We consider the problem of composing Berezin-Toeplitz operators on the Hilbert space of Gaussian square-integrable entire functions on complex n-space, \(\mathbb{C}^n \). For several interesting algebras of functions on \(\mathbb{C}^n \), we have \(T_{\varphi}T_{\psi} = T_{\varphi \circ \psi} \) for all \(\varphi, \psi \) in the algebra, where \(T_{\varphi} \) is the Berezin-Toeplitz operator associated with \(\varphi \) and \(\varphi \circ \psi \) is a "twisted" associative product on the algebra of functions. On the other hand, there is a \(C^1 \) function \(\varphi \) for which \(T_{\varphi} \) is bounded but \(T_{\varphi}T_{\psi} \neq T_{\psi} \) for any \(\psi \).

1. Introduction

For \(z = (z_1, ..., z_n) \) in complex n-space, \(\mathbb{C}^n \), with \(z \cdot w = z_1 \overline{w_1} + ... + z_n \overline{w_n} \), consider the space \(L^2(\mathbb{C}^n, d\mu) \) of Gaussian square-integrable complex-valued functions on \(\mathbb{C}^n \), with \(d\mu(z) = \exp\{-|z|^2/2\} dv(z)(2\pi)^{-n} \) with \(dv(z) \) Lebesgue measure. The entire functions in \(L^2(\mathbb{C}^n, d\mu) \) form a closed subspace \(H^2(\mathbb{C}^n, d\mu) \) which arises naturally as a representation space of the Heisenberg group \([B, F] \), \([BC1], [C] \). On this (Segal-Bargmann) space, there are natural operators, formally introduced by Berezin \([B2] \), defined densely for \(\varphi(\cdot) \) with \(\varphi(w)e^{w \cdot a} \) in \(L^2(\mathbb{C}^n, d\mu) \) for all \(a \) in \(\mathbb{C}^n \), by

\[
(T_{\varphi}f)(z) = \int_{\mathbb{C}^n} e^{z \cdot w/2} \varphi(w)f(w)d\mu(w).
\]

The (possibly unbounded) operator \(T_{\varphi} \) is called the Berezin-Toeplitz operator associated to \(\varphi \). Note that \(H^2(\mathbb{C}^n, d\mu) \) is a Bergman space with reproducing kernel function \(e^{z \cdot a/2} \) for the functional of "evaluation at \(a \" [B]. Note also that \(T_{\varphi} = 0 \) if and only if \(\varphi = 0 \) \([B] \) p. 140).

The operators \(T_{\varphi} \) are closely related to pseudodifferential operators on \(L^2(\mathbb{R}^n, dv) \). For \(\varphi \) bounded, and somewhat more generally, the relation is given by

\[
B^{-1}T_{\varphi}B = \mathcal{W}_{\beta_{\varphi}}
\]

where \(B \) is the Bargmann isometry \([Gn] \), \(\mathcal{W}_\beta \) is the Weyl operator on \(L^2(\mathbb{R}^n, dv) \) given by

\[
(W_{\beta}g)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \beta(\xi, \frac{x+y}{2})e^{i(x+y) \cdot \xi}g(y)dyd\xi,
\]

Received by the editors December 21, 1999 and, in revised form, March 21, 2000.
2000 Mathematics Subject Classification. Primary 47B35; Secondary 47B32.
The author’s research was supported by a grant of the NSF and a visiting membership in the Erwin Schrödinger Institute.

©2001 American Mathematical Society
and
\[\beta_\varphi(\xi, x) = \pi^{-n} \int_{\mathbb{C}^n} \varphi(w) e^{-(w-x, \xi)^2} dv(w). \]

The operators T_φ might, therefore, be expected to share many of the properties of pseudodifferential operators. It is not easy to demonstrate a complete equivalence, partly because T_φ is a “very smoothed” version of φ. The analytic structure of $H^2(\mathbb{C}^n, d\mu)$ also enters the picture so that, for example,
\[T_\varphi T_{\varphi_j} = T_{\varphi_{\varphi_j}}. \]

Moreover, the available function-theoretic machinery on $H^2(\mathbb{C}^n, d\mu)$ is relatively rudimentary, limited primarily to the Bergman space structure and the structure inherited as a representation space of the Heisenberg group.

In this note, we deal with the composition problem: is there a function $\varphi \circ \psi$ so that
\[T_\varphi T_\psi = T_{\varphi \circ \psi}? \]

As a consequence of representation-theoretic results in [C], we do have (*), for a reasonably large class of bounded φ, ψ and there is an explicit formula for $\varphi \circ \psi$. The same “Moyal-type” formula also holds for a large class of unbounded φ, ψ (with unbounded $T_\varphi, T_\psi, T_{\varphi \circ \psi}$) – precisely, φ, ψ can be arbitrary polynomials in $\{z_j, \overline{z}_j : 1 \leq j \leq n\}$.

On the other hand, we will exhibit a φ (unbounded, but C^∞), for which T_φ is a bounded operator but $T_\varphi T_{\varphi_j}$ cannot be approximated in norm by bounded Berezin-Toeplitz operators. Thus, there is a genuine limitation on our ability to compose Berezin-Toeplitz operators.

I thank Samuel D. Schack for useful comments.

2. COMPOSITION OF BEREZIN-TOEPLITZ OPERATORS

For C^∞ functions φ, ψ we consider the (formal) twisted product
\[\varphi \circ \psi = \sum_k \frac{(-2)^{|k|} k!}{k!} (\partial^k \varphi)(\overline{\partial}^k \psi) \]

where $k = (k_1, \ldots, k_n)$ with k_j non-negative integers, and
\[\partial_j = \frac{\partial}{\partial z_j}, \quad \overline{\partial}_j = \frac{\partial}{\partial \overline{z}_j}, \]
\[\partial^k = \partial_1^{k_1} \ldots \partial_n^{k_n}, \quad \overline{\partial}^k = \overline{\partial}_1^{k_1} \ldots \overline{\partial}_n^{k_n}, \]
\[|k| = k_1 + k_2 + \ldots + k_n, \]
\[k! = k_1! k_2! \ldots k_n!. \]

In the cases we will consider, the sum in (**) will converge.

The first case we consider arises from representation-theoretic considerations of the Heisenberg group [C]. We consider φ, ψ in the “smooth Bochner algebra” $B_a(\mathbb{C}^n)$ which consists of all Fourier-Stieltjes transforms of compactly supported, regular, bounded complex-valued Borel measures on \mathbb{C}^n. More precisely, let
\[\chi_a(z) = \exp\{i \text{Im}(z \cdot a)\}. \]

Then $B_a(\mathbb{C}^n)$ consists of all functions
\[\hat{\sigma}(z) = \int_{\mathbb{C}^n} \chi_a(z) \, d\sigma(a) \]
where σ is a compactly supported, regular, bounded complex-valued Borel measure. It is well known that such functions are bounded, uniformly continuous, with bounded derivatives of all orders.

As our first positive result, we have

Theorem 1. For φ, ψ in $B_1(C^n)$, $φ \circ ψ$ is also in $B_1(C^n)$ and $T_φ T_ψ = T_{φ \circ ψ}$. The series in (**) converges uniformly and absolutely.

Proof. In [C], it was shown that for $φ = σ$, $ψ = τ$ in $B_1(C^n)$,

$$T_φ T_ψ = T_{(σ τ)^-}.$$

Here, we defined $σ \circ τ$ for all $φ \in C_0(C^n)$ by

$$\int_{C^n} φ(c) \, d(σ \circ τ)(c) = \int_{C^n} \int_{C^n} φ(a + b) e^{-\frac{1}{2} dσ(a)} \, dτ(b)$$

so that

$$(* *) \quad (σ \circ τ)^-(z) = \int_{C^n} \int_{C^n} χ_{a+b}(z) e^{-\frac{1}{2} dσ(a)} dτ(b)$$

is in $B_1(C^n)$.

Expanding $e^{-\frac{1}{2} dσ/2}$ in MacLaurin series in (**) gives

$$\sum_{s=0}^{∞} \frac{1}{s!} \frac{1}{2^s} \sum_{1 ≤ j_i ≤ n} \int π_{j_1} \ldots π_{j_s} χ_a(z) \, dσ(a) \int b_{j_1} \ldots b_{j_s} \, χ_b(z) \, dτ(b)$$

$$= \sum_{s=0}^{∞} \frac{1}{s!} \frac{1}{2^s} \sum_{1 ≤ j_i ≤ n} 2^s (\overline{j}_{j_1} \ldots \overline{j}_{j_s}) (φ (-2)^s (\overline{j}_{j_1} \ldots \overline{j}_{j_s}) \psi)$$

$$= \sum_{s=0}^{∞} \frac{(-2)^s}{s!} \sum_{1 ≤ j_i ≤ n} (\overline{j}_{j_1} \ldots \overline{j}_{j_s}) (φ \overline{j}_{j_1} \ldots \overline{j}_{j_s} \psi)$$

$$= \sum_{k=0}^{∞} \frac{(-2)^{|k|}}{k!} (φ \overline{k} \psi)$$

and it is clear that the series converges uniformly and absolutely. Comparison with (**) shows that

$$T_φ T_ψ = T_{φ \circ ψ}$$

and completes the proof.

Our second case consists of $φ, ψ$ arbitrary polynomials in $\{z_j, \overline{z}_j : 1 ≤ j ≤ n\}$. Here, the operators $T_φ, T_ψ$ are unbounded and we need to be a little more careful. Nevertheless, we have for $φ \circ ψ$ given by (**),

Theorem 2. For $φ, ψ$ polynomials in $(z_1, \ldots, z_n, \overline{z}_1, \ldots, \overline{z}_n)$, we have $T_φ T_ψ$ defined on a dense domain consisting of linear combinations of functions of the form $\{p(z)e^{z^-a} : a \in C^n \text{ and } p(z) \text{ polynomial in } (z_1, ..., z_n)\}$. On this domain

$$T_φ T_ψ = T_{φ \circ ψ}$$

and $φ \circ ψ$ is polynomial in the z_j, \overline{z}_j.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Clearly, $T_{z_j}^2 = 2\partial_j$ and it is now easy to check that $T_{\varphi} p(z)e^{z^*a} = q(z)e^{z^*a}$ where p, q are polynomial in z_1, \ldots, z_n. The proof of the composition formula is inductive, in several steps.

We note first that, for φ polynomial in $\{z_j, \bar{z}_j : 1 \leq j \leq n\}$, $T_{\varphi}T_{z_j} = T_{\varphi z_j}$ implies $T_{\varphi|z_j|^2} = T_{\varphi(z_j)}$. This is because

$$T_{\varphi}T_{z_j}|^2 = (T_{\varphi}T_{z_j})T_{z_j} = T_{\varphi(z_j)}.$$

Next, we check inductively that $T_{\varphi}T_{z_j} = T_{\varphi z_j}$ for all φ polynomial in $\{z_j, \bar{z}_j : 1 \leq j \leq n\}$. It is enough to consider φ monomial. Assume the result for φ of fixed degree (φ constant is trivial). The inductive step is:

$$T_{\varphi z_k}T_{z_j} = T_{\varphi z_k}T_{z_k} = T_{\varphi z_k^*z_j}, \quad k \neq j,$$

$$T_{\varphi z_j}T_{z_j} = T_{\varphi(T_{z_j}T_{z_j})} = T_{\varphi(T_{z_j})} - T_{z_j} - T_{z_j}^2 = T_{\varphi|z_j|^2} - T_{z_j} - T_{\varphi|z_j|^2} = T_{\varphi z_j^*z_j},$$

$$T_{z_k z_j}T_{z_j} = T_{z_k(T_{z_j}T_{z_j})} = T_{z_k(z_j)} = T_{z_k(z_j^*z_j)} = T_{z_k z_j^*z_j}.$$

Thus, $T_{\varphi}T_{z_j} = T_{\varphi z_j}$ for all φ.

Next, for arbitrary φ we consider $T_{\varphi}T_{\psi}$ and do induction on the degree of ψ. We can assume ψ is monomial. Assume the result for all φ and for ψ of fixed degree (ψ constant is trivial). The inductive step is, first,

$$T_{\varphi}T_{z_j} = (T_{\varphi}T_{\psi})T_{z_j} = T_{\varphi z_j} = T_{z_j}.$$
This is a direct calculation. We note that
\[\varphi \circ \overline{\zeta}_j = \varphi \overline{\zeta}_j - 2(\partial_j \varphi) \]
so
\[(\varphi \circ \overline{\zeta}_j) \circ \psi = \varphi \overline{\zeta}_j \circ \psi - 2(\partial_j \varphi) \circ \psi \]
\[= \sum_k \frac{(-2)^{|k|}}{k!} \overline{\zeta}_j (\partial^k \varphi)(\partial^k \psi) \]
\[-2 \sum_k \frac{(-2)^{|k|}}{k!} (\partial^k \partial_j \varphi)(\partial^k \psi). \]
Using
\[\overline{\partial}^k (\overline{\zeta}_j \psi) = \overline{\zeta}_j (\overline{\partial}^k \psi) + k_j (\overline{\partial}^{k-\delta_j} \psi) \]
where
\[k - \delta_j = (k_1, k_2, ..., k_j - 1, k_{j+1}, ..., k_n), \]
we see that
\[\varphi \circ \overline{\zeta}_j \psi = \sum_k \frac{(-2)^{|k|}}{k!} (\partial^k \varphi)(\partial^k \overline{\zeta}_j \psi) \]
\[= \sum_k \frac{(-2)^{|k|}}{k!} \overline{\zeta}_j (\partial^k \varphi)(\partial^k \psi) \]
\[+ \sum_k \frac{(-2)^{|k|}}{k!} (\partial^k \varphi) k_j (\overline{\partial}^{k-\delta_j} \psi). \]
Thus, we need only check that
\[\sum_k \frac{(-2)^{|k|}}{k!} (\partial^k \varphi) k_j (\overline{\partial}^{k-\delta_j} \psi) = -2 \sum_k \frac{(-2)^{|k|}}{k!} (\partial^k \partial_j \varphi)(\partial^k \psi). \]
Reindexing the sum on the left by \(\ell = k - \delta_j \) completes the proof.

Remark. Since \(\overline{\zeta}_j \circ \psi = \overline{\zeta}_j \psi \), the identity
\[\varphi \circ \overline{\zeta}_j \psi = (\varphi \circ \overline{\zeta}_j) \circ \psi \]
follows from the reasonably well-known associativity of \(\circ \). Our computational proof has the advantage of giving associativity of \(\circ \) as an immediate corollary of Theorem 2 since
\[T_{\varphi \circ (\psi \circ \gamma)} = T_{\varphi}(T_{\psi}T_{\gamma}) = (T_{\varphi}T_{\psi})T_{\gamma} = T_{(\varphi \circ \psi) \circ \gamma}. \]

3. \(T_{\varphi} \) with \(T_{\varphi}T_{\psi} \neq T_{\psi} \) for any \(\psi \)

In this section, we produce the promised obstruction to composition of Berezin-Toeplitz operators. We use some calculations from [BC2] and we begin with a needed improvement of [BC2, Theorem 17]. In this section, we work on \(H^2(C, d\mu) \) (\(n = 1 \)). Here, the Bergman reproducing kernel function for evaluation at \(z \) is just
\[K(w, z) = e^{w\overline{z}/2} \]
and it follows that
\[k_z(w) = K(w, z)/\sqrt{K(z, z)} = e^{w\overline{z}/2 - |z|^2/4} \]
is a unit vector in $H^2(\mathbb{C}, d\mu)$. We consider the unitary operator

$$(R_a f)(z) = f(az)$$

on $H^2(\mathbb{C}, d\mu)$ for $|a| = 1$.

Theorem 3. For $|a| = 1$ and $\text{Re } a < 0$, we have

$$\|R_a - T_\psi\| \geq 1$$

for all ψ such that $\psi K(\cdot, z)$ is in $L^2(\mathbb{C}, d\mu)$ for every z in \mathbb{C}.

Proof. We consider

$$\|T_\psi - R_a\| \geq |\langle T_\psi k_z, R_a k_z \rangle - \langle R_a k_z, R_a k_z \rangle|$$

$$\geq |\langle T_\psi k_z, R_a k_z \rangle - 1|.$$

Now,

$$\langle T_\psi k_z, R_a k_z \rangle = \langle \psi \chi_z, K(\cdot, (1 + \overline{a})z) \rangle e^{-|z|^2/2}$$

so we have

$$|\langle T_\psi k_z, R_a k_z \rangle| \leq e^{-|z|^2/2} \| \psi \| \sqrt{K((1 + \overline{a})z, (1 + \overline{a})z)}$$

$$\leq \| \psi \| e^{-|z|^2/2} e^{1 + |a|^2 |z|^2 / 4}$$

$$\leq \| \psi \| e^{jz^2/2 \text{Re } a/2}.$$

Since $\text{Re } a < 0$, we see that

$$|\langle T_\psi k_z, R_a k_z \rangle| \to 0$$

as $|z| \to \infty$. Thus, $\|T_\psi - R_a\| \geq 1$.

The function φ will be chosen to have the form $\varphi(z) = e^{jz^2}$ where $\text{Re } \lambda < \frac{1}{4}$ so that T_{φ} makes sense.

Lemma. For $\lambda = \frac{1}{4} + \frac{i}{2}$ and $\varphi(z) = e^{jz^2}$, we have T_{φ} unitary with

$$T_{\varphi} T_{\varphi} = a R_a$$

for $a = \frac{(1 - 2\lambda)^2}{2} = -\frac{7}{25} + \frac{24}{25}$.

Proof. $\text{Re } \lambda < \frac{1}{4}$ and calculations outlined in [BC2, p. 582] show that T_{φ} is diagonal in the basis

$$e_k = (2k)!^{-1/2} z^k, \quad k = 0, 1, \ldots,$$

for $H^2(\mathbb{C}, d\mu)$, with

$$T_{\varphi} e_k = (1 - 2\lambda)^{-k-1} e_k.$$

Now

$$\lambda = \frac{1}{4} + \frac{i}{2}$$

and so

$$T_{\varphi} T_{\varphi} e_k = (1 - 2\lambda)^{-2(k+1)} e_k = a^{k+1} e_k.$$

But

$$a R_a e_k = a^{k+1} e_k$$

and we are done.
We now have the promised

Theorem 4. For \(\lambda = \frac{1}{8} + i \frac{3}{8} \) and \(a = \frac{1}{25} - \frac{7}{25} + \frac{24}{25} i \), with \(\varphi(z) = e^{\lambda|z|^2} \),
\[
\|T_\varphi T_\psi - T_\psi \| \geq 1
\]
for all \(\psi \) such that \(\psi K(\cdot, z) \) is in \(L^2(C, d\mu) \) for every \(z \) in \(C \).

Proof. Direct combination of Theorem 3 and the Lemma.

Remark. In fact, for \(\varphi(z) = e^{\lambda|z|^2} \), (***) yields
\[
\varphi \circ \varphi = e^{\mu|z|^2},
\]
where \(\mu = 2\lambda(1 - \lambda) \). Thus, for \(\lambda = \frac{1}{8} + i \frac{3}{8} \), we have \(\mu = \frac{16}{25} + i \frac{12}{25} \) and \(e^{\mu|z|^2} f(z) \) cannot
be in \(L^2(C, d\mu) \) for any \(f \neq 0 \) in \(H^2(C, d\mu) \).

4. **Remarks**

There is a considerable space between Theorems 1 and 2 and Theorem 4. It does not seem easy to lift the known much stronger positive results directly over from the setting of pseudodifferential operators. It does seem likely that (**) provides a composition formula for Berezin-Toeplitz operators in a setting substantially larger than those of Theorems 1 and 2. For non-\(C^\infty \) \(\varphi, \psi \) or even for general \(C^\infty \) \(\varphi, \psi \), the problem of determining whether there is a \(\varphi \circ \psi \) with \(T_\varphi T_\psi = T_{\varphi \circ \psi} \), as well as the form of \(\varphi \circ \psi \), remains open.

Theorems 1 and 2 can be extended to the natural family of Gaussian measures on \(C^n \) which provide representation spaces for the Heisenberg group \(\mathbb{Q} \). For \(d\mu_r(z) = (2\pi)^n e^{-|z|^2} dv(z) \) with \(r > 0 \) and \(H^2(C^n, d\mu_r) \) as before, we have Bergman kernels
\[
K_r(w, z) = e^{r w \cdot z}
\]
and Berezin-Toeplitz operators on \(H^2(C^n, d\mu_r) \)
\[
(T_\varphi^{(r)} f)(z) = \int_{C^n} e^{r z \cdot w} \varphi(w) f(w) \, d\mu_r(w).
\]
Then minor modifications yield

Theorem 1’. For \(\varphi, \psi \) in \(B_a(C^n) \), \(\varphi \circ_r \psi \) is also in \(B_a(C^n) \) for
\[
(\ddagger) \quad \varphi \circ_r \psi = \sum_k \left(\frac{-1}{r} \right)^{|k|} \frac{1}{k!} (\partial^k \varphi)(\overline{\partial}^k \psi)
\]
and \(T_\varphi^{(r)} T_\psi^{(r)} = T_{\varphi \circ \psi} \). The series in (\ddagger) converges uniformly and absolutely. Moreover, for \(r > 1 \)
\[
\| \varphi \circ_r \psi - \sum_{|k| \leq K} \left(\frac{-1}{r} \right)^{|k|} \frac{1}{k!} (\partial^k \varphi)(\overline{\partial}^k \psi) \| \leq \frac{1}{r^{K+1}} C(\varphi, \psi, K)
\]
for \(C(\varphi, \psi, K) \) a constant independent of \(r \).

Theorem 2’. For \(\varphi, \psi \) polynomials in \((z_1, \ldots, z_n, \overline{z}_1, \ldots, \overline{z}_n) \), we have \(T_\varphi^{(r)} T_\psi^{(r)} \) defined on a dense domain consisting of linear combinations of functions of the form \(\{ p(z) e^{a \cdot z} : a \in C^n \) and \(p(z) \) polynomial in \((z_1, \ldots, z_n) \) \}. On this domain
\[
T_\varphi^{(r)} T_\psi^{(r)} = T_{\varphi \circ \psi}
\]
for \(\varphi \circ_r \psi \) given by (\ddagger) and \(\varphi \circ_r \psi \) is polynomial in the \(z_j, \overline{z}_j \).
While Theorems 1 and 2 provide some basis for optimism about the development of a reasonably extensive Berezin-Toeplitz calculus on C^n, the situation is considerably less promising on the classical Bergman space of the disc, $H^2(D, \frac{dA}{\pi})$, where $D = \{z \in \mathbb{C} : |z| < 1\}$ and $\frac{dA}{\pi}$ is normalized Lebesgue area measure. In this case, the Bergman kernel function is just $K(z, w) = (1 - z \overline{w})^{-2}$ and the Berezin-Toeplitz operator T_φ on $H^2(D, \frac{dA}{\pi})$ is given by

$$(T_\varphi f)(z) = \int_D K(z, w) \varphi(w) f(w) \frac{dA(w)}{\pi}.$$

Direct calculation shows, first, that

$$T_z T_z^* = T_{1+\log|z|^2}.$$

Moreover,

$$T_z^* T_z^* = T_{1+2\log|z|^2} + P_0$$

where $P_0 f = \int_D f(z) \frac{dA(z)}{\pi}$ and $P_0 \neq T_\varphi$ for any φ. For asymptotic results on composition of Berezin-Toeplitz operators on $H^2(D, \frac{dA}{\pi})$ see [KL].

REFERENCES

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT BUFFALO, BUFFALO, NEW YORK 14260

E-mail address: lacoburn@acsu.buffalo.edu