Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A nicely behaved singular integral on a purely unrectifiable set

Author: Petri Huovinen
Journal: Proc. Amer. Math. Soc. 129 (2001), 3345-3351
MSC (2000): Primary 28A75, 42B20; Secondary 30E20
Published electronically: April 2, 2001
MathSciNet review: 1845012
Full-text PDF

Abstract | References | Similar Articles | Additional Information


We construct an example of a purely 1-unrectifiable AD-regular set $E$ in the plane such that the limit

\begin{displaymath}\lim_{r\downarrow 0} \int\limits_{E\setminus B(x,r)} K(x-y) \, d \mathcal{H}^1 (y) \end{displaymath}

exists and is finite for $\mathcal{H}^1$ almost every $x\in E$ for some class of antisymmetric Calderón-Zygmund kernels. Moreover, the singular integral operators associated with these kernels are bounded in $L^2(F)$, where $F\subset E$ has a positive $\mathcal{H}^1$ measure.

References [Enhancements On Off] (What's this?)

  • 1. A. P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A. 74 1977, pp. 1324-1327. MR 57:6445
  • 2. M. Christ, Lectures on Singular Integral Operators, Regional Conference Series in Mathematics 77, Amer. Math. Soc., 1990. MR 92f:42021
  • 3. M. Christ, A $T(b)$ theorem with remarks on analytic capacity and Cauchy integral, Colloq. Math. 60/61 1990, pp. 601-628. MR 92k:42020
  • 4. G. David, Unrectifiable 1-sets have vanishing analytic capacity, to appear in Rev. Mat. Iberoamericana 14 1998, pp. 369-479. MR 99i:42018
  • 5. G. David, P. Mattila, Removable sets for Lipschitz harmonic functions in the plane, Rev. Mat. Iberoamericana 16 2000, pp. 137-215. CMP 2000:15
  • 6. G. David, S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Surveys andf Monographs 38, Amer. Math. Soc., 1993. MR 94i:28003
  • 7. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. MR 96h:28006
  • 8. P. Mattila, M. S. Melnikov, J. Verdera, The Cauchy integral, analytic capacity, and uniform rectifiability, Ann. of Math. 144 1996, pp. 127-136. MR 97k:31004
  • 9. F. Nazarov, S. Treil, A. Volberg, Pulling ourselves up by the hair, Preprint.
  • 10. X. Tolsa, Principal values for the Cauchy integral and rectifiability, Proc. Amer. Math. Soc. 128 2000, pp. 2111-2119. CMP 2000:14

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 28A75, 42B20, 30E20

Retrieve articles in all journals with MSC (2000): 28A75, 42B20, 30E20

Additional Information

Petri Huovinen
Affiliation: Department of Mathematics, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland

Keywords: Singular integrals, rectifiability
Received by editor(s): August 31, 1999
Received by editor(s) in revised form: March 22, 2000
Published electronically: April 2, 2001
Additional Notes: The author was supported by EU TMR Grant #ERBFMBICT972410
Communicated by: David Preiss
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society