A nicely behaved singular integral on a purely unrectifiable set

Author:
Petri Huovinen

Journal:
Proc. Amer. Math. Soc. **129** (2001), 3345-3351

MSC (2000):
Primary 28A75, 42B20; Secondary 30E20

DOI:
https://doi.org/10.1090/S0002-9939-01-05955-X

Published electronically:
April 2, 2001

MathSciNet review:
1845012

Full-text PDF

Abstract | References | Similar Articles | Additional Information

We construct an example of a purely 1-unrectifiable AD-regular set in the plane such that the limit

exists and is finite for almost every for some class of antisymmetric Calderón-Zygmund kernels. Moreover, the singular integral operators associated with these kernels are bounded in , where has a positive measure.

**1.**A. P. Calderón,*Cauchy integrals on Lipschitz curves and related operators*, Proc. Nat. Acad. Sci. U.S.A.**74**1977, pp. 1324-1327. MR**57:6445****2.**M. Christ,*Lectures on Singular Integral Operators*, Regional Conference Series in Mathematics**77**, Amer. Math. Soc., 1990. MR**92f:42021****3.**M. Christ,*A theorem with remarks on analytic capacity and Cauchy integral*, Colloq. Math.**60/61**1990, pp. 601-628. MR**92k:42020****4.**G. David,*Unrectifiable 1-sets have vanishing analytic capacity*, to appear in Rev. Mat. Iberoamericana**14**1998, pp. 369-479. MR**99i:42018****5.**G. David, P. Mattila,*Removable sets for Lipschitz harmonic functions in the plane*, Rev. Mat. Iberoamericana**16**2000, pp. 137-215. CMP**2000:15****6.**G. David, S. Semmes,*Analysis of and on Uniformly Rectifiable Sets*, Surveys andf Monographs 38, Amer. Math. Soc., 1993. MR**94i:28003****7.**P. Mattila,*Geometry of Sets and Measures in Euclidean Spaces*, Cambridge University Press, 1995. MR**96h:28006****8.**P. Mattila, M. S. Melnikov, J. Verdera,*The Cauchy integral, analytic capacity, and uniform rectifiability*, Ann. of Math.**144**1996, pp. 127-136. MR**97k:31004****9.**F. Nazarov, S. Treil, A. Volberg,*Pulling ourselves up by the hair*, Preprint.**10.**X. Tolsa,*Principal values for the Cauchy integral and rectifiability*, Proc. Amer. Math. Soc.**128**2000, pp. 2111-2119. CMP**2000:14**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
28A75,
42B20,
30E20

Retrieve articles in all journals with MSC (2000): 28A75, 42B20, 30E20

Additional Information

**Petri Huovinen**

Affiliation:
Department of Mathematics, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland

Email:
pjh@math.jyu.fi

DOI:
https://doi.org/10.1090/S0002-9939-01-05955-X

Keywords:
Singular integrals,
rectifiability

Received by editor(s):
August 31, 1999

Received by editor(s) in revised form:
March 22, 2000

Published electronically:
April 2, 2001

Additional Notes:
The author was supported by EU TMR Grant #ERBFMBICT972410

Communicated by:
David Preiss

Article copyright:
© Copyright 2001
American Mathematical Society