Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On fillable contact structures up to homotopy


Author: Paolo Lisca
Journal: Proc. Amer. Math. Soc. 129 (2001), 3437-3444
MSC (2000): Primary 57M50, 57R57; Secondary 53C15, 57R15
DOI: https://doi.org/10.1090/S0002-9939-01-05964-0
Published electronically: April 24, 2001
MathSciNet review: 1845023
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $Y$ be a closed, oriented $3$-manifold. The set $\mathcal{F}_Y$of homotopy classes of positive, fillable contact structures on $Y$ is a subtle invariant of $Y$, known to always be a finite set. In this paper we study $\mathcal{F}_Y$ under the assumption that $Y$ carries metrics with positive scalar curvature. Using Seiberg-Witten gauge theory, we prove that two positive, fillable contact structures on $Y$are homotopic if and only if they are homotopic on the complement of a point. This implies that the cardinality of $\mathcal{F}_Y$ is bounded above by the order of the torsion subgroup of $H_1(Y;{\mathbb Z})$. Using explicit examples we show that without the geometric assumption on $Y$ such a bound can be arbitrarily far from holding.


References [Enhancements On Off] (What's this?)

  • 1. Y. Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98 (1989), 623-637. MR 90k:53064
  • 2. -, Topological characterization of Stein manifolds of dimension $>$ 2, Intern. J. of Math. 1, No. 1 (1990), 29-46. MR 91k:32012
  • 3. -, Filling by holomorphic discs and its applications, in ``Geometry of low-dimensional manifolds'', 2 (Durham, 1989), London Math. Soc. Lecture Notes Series 151 (1991), 45-67. MR 93g:53060
  • 4. -, Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier 42 (1992), 165-192. MR 93k:57029
  • 5. Y. Eliashberg, W. Thurston, Confoliations, AMS University Lecture Series 13, Providence, RI, 1998. MR 98m:53042
  • 6. E. Giroux, Topologie de contact en dimension 3 (autour des travaux de Yakov Eliashberg), Séminaire Bourbaki, Vol. 1992/93. Astérisque No. 216, (1993), Exp. No. 760, 3, 7-33. MR 94k:57040
  • 7. -, Structures de contact en dimension trous et bifurcations des feuilletages de surfaces, preprint, 1999.
  • 8. R.E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693. MR 2000a:57070
  • 9. K. Honda, On the Classification of Tight Contact Structures I: Lens Spaces, solid Tori, and $T^2\x I$, preprint, 1999.
  • 10. P.B. Kronheimer, T.S. Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997), 209-256. MR 98h:57058
  • 11. F. Laudenbach, Orbites périodiques et courbes pseudo-holomorphes, application à la conjecture de Weinstein en dimension 3 [d'après H. Hofer et al.], Astérisque 227 (1995), 309-333. MR 96c:58065
  • 12. P. Lisca, Symplectic fillings and positive scalar curvature, Geometry and Topology 2 (1998), 103-116. MR 99f:57038
  • 13. J. Martinet, Formes de contact sur les variètès de dimension 3, Lecture Notes in Math. 209, Springer-Verlag (1971), 142-163. MR 50:3263
  • 14. J.W. Morgan, T.S. Mrowka and D. Ruberman, The $L^2$-moduli space and a vanishing theorem for Donaldson polynomial invariants, Monographs in Geometry and Topology, no. II, International Press, Cambridge, MA, 1994. MR 95h:57039
  • 15. V. Turaev, Torsion invariants of ${\mathit {Spin^c}}$ structures on 3-manifolds, Math. Res. Lett. 4 (1997), no. 5, 679-695. MR 98k:57038

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57M50, 57R57, 53C15, 57R15

Retrieve articles in all journals with MSC (2000): 57M50, 57R57, 53C15, 57R15


Additional Information

Paolo Lisca
Affiliation: Dipartimento di Matematica, Università di Pisa I-56127 Pisa, Italy
Email: lisca@dm.unipi.it

DOI: https://doi.org/10.1090/S0002-9939-01-05964-0
Keywords: Contact structures, gauge theory, positive scalar curvature, symplectic fillings, Seiberg--Witten equations
Received by editor(s): November 29, 1999
Received by editor(s) in revised form: April 12, 2000
Published electronically: April 24, 2001
Additional Notes: The author’s research was partially supported by MURST
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society