Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A universal property of reflexive hereditarily indecomposable Banach spaces


Author: Spiros A. Argyros
Journal: Proc. Amer. Math. Soc. 129 (2001), 3231-3239
MSC (2000): Primary 46B03, 46B70, 46B10; Secondary 03E10, 03E15
DOI: https://doi.org/10.1090/S0002-9939-01-05980-9
Published electronically: April 16, 2001
MathSciNet review: 1844998
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

It is shown that every separable Banach space $X$ universal for the class of reflexive Hereditarily Indecomposable space contains $C[0,1]$ isomorphically and hence it is universal for all separable spaces. This result shows the large variety of reflexive H.I. spaces.


References [Enhancements On Off] (What's this?)

  • [A-F] S.A. Argyros and V. Felouzis. Interpolating Hereditarily Indecomposable Banach spaces, Journal of AMS 13 (2000) 243-294. CMP 2000:11
  • [B] J. Bourgain. On separable Banach spaces universal for all separable reflexive spaces, Proc. of AMS 79(1980) 241-246. MR 81f:46021
  • [G-M] W.T. Gowers and B. Maurey. The unconditional basic sequence problem, Journal of AMS 6(1993) 851-874. MR 94k:46021
  • [L-T] J. Lindenstrauss and L. Tzafriri. Classical Banach spaces I, Spinger Verlag 92(1977). MR 58:17766
  • [L] J. Lindenstrauss. On non-separable reflexive Banach spaces, Bulletin AMS 72(1996), 967-970.
  • [N] R. Neidinger. Properties of Tauberian Operators, Dissertation. University of Texas at Austin, 1984.
  • [S] W. Szlenk. The non-existence of a separable reflexive Banach spaces universal for all separable reflexive Banach spaces, Studia Math. 30(1968) 53-61. MR 37:3327

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B03, 46B70, 46B10, 03E10, 03E15

Retrieve articles in all journals with MSC (2000): 46B03, 46B70, 46B10, 03E10, 03E15


Additional Information

Spiros A. Argyros
Affiliation: Department of Mathematics, Athens University, Athens, Greece
Address at time of publication: Department of Mathematics, National Technical University of Athens, Athens 15780, Greece
Email: sargyros@math.uoa.gr, sargyros@math.ntua.gr

DOI: https://doi.org/10.1090/S0002-9939-01-05980-9
Keywords: Reflexive Banach spaces, hereditarily indecomposable Banach spaces, universal Banach spaces, well-founded trees
Received by editor(s): March 5, 2000
Published electronically: April 16, 2001
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society