Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Quasiconformal variation of slit domains

Authors: Clifford J. Earle and Adam Lawrence Epstein
Journal: Proc. Amer. Math. Soc. 129 (2001), 3363-3372
MSC (2000): Primary 30C20, 30C62
Published electronically: January 29, 2001
MathSciNet review: 1845014
Full-text PDF

Abstract | References | Similar Articles | Additional Information


We use quasiconformal variations to study Riemann mappings onto variable single slit domains when the slit is the tail of an appropriately smooth Jordan arc. In the real analytic case our results answer a question of Dieter Gaier and show that the function $\kappa$ in Löwner's differential equation is real analytic.

References [Enhancements On Off] (What's this?)

  • 1. L. V. Ahlfors, Conformality with respect to Riemannian metrics, Ann. Acad. Sci. Fenn. 206 (1955), 1-22. MR 17:657f
  • 2. -, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill, New York, 1973. MR 50:10211
  • 3. L. V. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. 72 (1960), 385-404. MR 22:5813
  • 4. L. Brickman, Y. J. Leung, and D. R. Wilken, On extreme points and support points of the class $S$, Ann. Univ. Mariae Curie-Sk\lodowska Sect. A 36/37 (1982/83), 25-31. MR 86k:30019
  • 5. S. B. Chae, Holomorphy and Calculus in Normed Spaces, Monographs and Textbooks in Pure and Applied Mathematics 92, Marcel Dekker, New York and Basel, 1985. MR 86j:46044
  • 6. P. L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983. MR 85j:30034
  • 7. C. J. Earle and S. Mitra, Variation of moduli under holomorphic motions, Contemp. Math. 256, Amer. Math. Soc., Providence, RI, 2000. CMP 2000:14
  • 8. H. Kober, Dictionary of Conformal Representations, Dover, 1952. MR 14:156d; table errata MR 53:4455
  • 9. Y. Komatu, Zur konformen Schlitzabbildung, Proc. Imp. Acad. Tokyo 17 (1941), 11-17. MR 2:276b
  • 10. D. Marshall and S. Rohde, The Löwner differential equation and slit discs, in preparation.
  • 11. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, Heidelberg, New York, 1992. MR 95b:30008
  • 12. B. Rodin, Behavior of the Riemannmapping function under complex analytic deformations of the domain, Complex Variables Theory Appl. 5 (1986), 189-195. MR 88a:30012
  • 13. H. L. Royden, Löwner's kappa function when the slit is analytic, with applications, M. S. Thesis, Stanford University, 1949.
  • 14. M. Schiffer, Sur l'équation différentielle de M. Löwner, C. R. Acad. Sci. Paris 221 (1945), 369-371. MR 7:515a

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C20, 30C62

Retrieve articles in all journals with MSC (2000): 30C20, 30C62

Additional Information

Clifford J. Earle
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853

Adam Lawrence Epstein
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853
Address at time of publication: Department of Mathematics, University of Warwick, Coventry CV4 7AL, England

Keywords: Conformal radius, slit domain, L\"owner differential equation
Received by editor(s): January 27, 2000
Received by editor(s) in revised form: March 24, 2000
Published electronically: January 29, 2001
Additional Notes: The second author was supported in part by NSF Grant DMS 9803242.
Communicated by: Albert Baernstein II
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society