Defending the negated Kaplansky conjecture
Author:
Akira Masuoka
Journal:
Proc. Amer. Math. Soc. 129 (2001), 31853192
MSC (2000):
Primary 16W30, 16W35
Published electronically:
May 10, 2001
MathSciNet review:
1844991
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: To answer in the negative a conjecture of Kaplansky, four recent papers independently constructed four families of Hopf algebras of fixed finite dimension, each of which consisted of infinitely many isomorphism classes. We defend nevertheless the negated conjecture by proving that the Hopf algebras in each family are cocycle deformations of each other.
 [AS]
N.
Andruskiewitsch and H.J.
Schneider, Lifting of quantum linear spaces and pointed Hopf
algebras of order 𝑝³, J. Algebra 209
(1998), no. 2, 658–691. MR 1659895
(99k:16075), http://dx.doi.org/10.1006/jabr.1998.7643
 [BDG]
M.
Beattie, S.
Dăscălescu, and L.
Grünenfelder, On the number of types of finitedimensional
Hopf algebras, Invent. Math. 136 (1999), no. 1,
1–7. MR
1681117 (2000a:16068), http://dx.doi.org/10.1007/s002220050302
 [D]
Yukio
Doi, Braided bialgebras and quadratic bialgebras, Comm.
Algebra 21 (1993), no. 5, 1731–1749. MR 1213985
(94a:16071), http://dx.doi.org/10.1080/00927879308824649
 [G]
Shlomo
Gelaki, Pointed Hopf algebras and Kaplansky’s 10th
conjecture, J. Algebra 209 (1998), no. 2,
635–657. MR 1659891
(99j:16024), http://dx.doi.org/10.1006/jabr.1998.7513
 [M]
Eric Müller, Finite subgroups of the quantum general linear group, Proc. London Math. Soc. 81 (2000), no. 1, 190210. CMP 2000:12
 [R]
David
E. Radford, On Kauffman’s knot invariants arising from
finitedimensional Hopf algebras, Advances in Hopf algebras (Chicago,
IL, 1992) Lecture Notes in Pure and Appl. Math., vol. 158, Dekker,
New York, 1994, pp. 205–266. MR 1289427
(96g:57013)
 [P]
Peter
Schauenburg, Hopf biGalois extensions, Comm. Algebra
24 (1996), no. 12, 3797–3825. MR 1408508
(97f:16064), http://dx.doi.org/10.1080/00927879608825788
 [S]
HansJürgen
Schneider, Some remarks on exact sequences of quantum groups,
Comm. Algebra 21 (1993), no. 9, 3337–3357. MR 1228767
(94e:17026), http://dx.doi.org/10.1080/00927879308824733
 [T1]
Mitsuhiro
Takeuchi, Some topics on
𝐺𝐿_{𝑞}(𝑛), J. Algebra
147 (1992), no. 2, 379–410. MR 1161300
(93b:17055), http://dx.doi.org/10.1016/00218693(92)902125
 [T2]
Mitsuhiro
Takeuchi, Cocycle deformations of coordinate rings of quantum
matrices, J. Algebra 189 (1997), no. 1,
23–33. MR
1432363 (97m:16077), http://dx.doi.org/10.1006/jabr.1996.6878
 [AS]
 N. Andruskiewitsch and H.J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order , J. Algebra 209 (1998), 658691. MR 99k:16075
 [BDG]
 M. Beattie, S. Dascalescu and L. Grünenfelder, On the number of types of finitedimensional Hopf algebras, Invent. math. 136 (1999), 17. MR 2000a:16068
 [D]
 Y. Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21 (1993), 17311749. MR 94a:16071
 [G]
 S. Gelaki, Pointed Hopf algebras and Kaplansky's 10th conjecture, J. Algebra 209 (1998), 635657. MR 99j:16024
 [M]
 Eric Müller, Finite subgroups of the quantum general linear group, Proc. London Math. Soc. 81 (2000), no. 1, 190210. CMP 2000:12
 [R]
 D. Radford, On Kauffman's knot invariants arising from finitedimensional Hopf algebras, In: J. Bergen and S. Montgomery (eds.), ``Advances in Hopf algebras", Lec. Notes in Pure and Applied Math. Vol. 158, Dekker, New York, 1994, pp. 205266. MR 96g:57013
 [P]
 Peter Schauenburg, Hopf bigalois extensions, Comm. Algebra 24 (1996), 37973825. MR 97f:16064
 [S]
 H.J. Schneider, Some remarks on exact sequences of quantum groups, Comm. Algebra 21 (1992), 33373358. MR 94e:17026
 [T1]
 M. Takeuchi, Some topics on , J. Algebra 147 (1992), 379410. MR 93b:17055
 [T2]
 M. Takeuchi, Cocycle deformations of coordinate rings of quantum matrices, J. Algebra 189 (1997), 2333. MR 97m:16077
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
16W30,
16W35
Retrieve articles in all journals
with MSC (2000):
16W30,
16W35
Additional Information
Akira Masuoka
Affiliation:
Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 3058571, Japan
Email:
akira@math.tsukuba.ac.jp
DOI:
http://dx.doi.org/10.1090/S0002993901060051
PII:
S 00029939(01)060051
Keywords:
Hopf algebra,
quantum group,
cocycle deformation,
monoidal MoritaTakeuchi equivalence.
Received by editor(s):
August 4, 1999
Received by editor(s) in revised form:
March 22, 2000
Published electronically:
May 10, 2001
Dedicated:
Dedicated to Professor Yukio Tsushima on his sixtieth birthday
Communicated by:
Ken Goodearl
Article copyright:
© Copyright 2001
American Mathematical Society
