Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Minimal sufficiency of order statistics in convex models

Author: Lutz Mattner
Journal: Proc. Amer. Math. Soc. 129 (2001), 3401-3411
MSC (2000): Primary 62B05, 62G30, 28A35
Published electronically: May 10, 2001
MathSciNet review: 1845019
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


Let $\mathcal{P}$ be a convex and dominated statistical model on the measurable space $(\mathcal{X},\mathcal{A})$, with $\mathcal{A}$ minimal sufficient, and let $n\in\mathbb{N} $. Then $\mathcal{A}^{\otimes n}_{\operatorname{sym}}$, the $\sigma$-algebra of all permutation invariant sets belonging to the $n$-fold product $\sigma$-algebra $\mathcal{A}^{\otimes n}$, is shown to be minimal sufficient for the corresponding model for $n$ independent observations, $\mathcal{P}^n = \left\{P^{\otimes n}:P\in\mathcal{P}\right\}$.

The main technical tool provided and used is a functional analogue of a theorem of Grzegorek (1982) concerning generators of $\mathcal{A}^{\otimes n}_{\operatorname{sym}}$.

References [Enhancements On Off] (What's this?)

  • 1. J. L. Doob, Measure theory, Graduate Texts in Mathematics, vol. 143, Springer-Verlag, New York, 1994. MR 1253752
  • 2. Richard M. Dudley, Real analysis and probability, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1989. MR 982264
  • 3. E. Grzegorek, Symmetric 𝜎-fields of sets and universal null sets, Measure theory, Oberwolfach 1981 (Oberwolfach, 1981) Lecture Notes in Math., vol. 945, Springer, Berlin-New York, 1982, pp. 101–109. MR 675273
  • 4. Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR 0033869
  • 5. Marie-Françoise Le Bihan, Monique Littaye-Petit, and Jean-Luc Petit, Exhaustivité par paire, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1753–A1756 (French). MR 0267670
  • 6. D. Landers, Sufficient and minimal sufficient 𝜎-fields, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 197–207. MR 0322995
  • 7. Harald Luschgy, Sur l’existence d’une plus petite sous-tribu exhaustive par paire, Ann. Inst. H. Poincaré Sect. B (N.S.) 14 (1978), no. 4, 391–398 (1979) (French, with English summary). MR 523218
  • 8. Avi Mandelbaum and Ludger Rüschendorf, Complete and symmetrically complete families of distributions, Ann. Statist. 15 (1987), no. 3, 1229–1244. MR 902255, 10.1214/aos/1176350502
  • 9. L. Mattner, Complete order statistics in parametric models, Ann. Statist. 24 (1996), no. 3, 1265–1282. MR 1401849, 10.1214/aos/1032526968
  • 10. MATTNER, L. (1999). Sufficiency, exponential families, and algebraically independent numbers. Math. Meth. Statist. 8, 397-406. CMP 2000:07
  • 11. MATTNER, L. (2000). Minimal sufficienct statistics in location-scale parameter models. Bernoulli 6, 1121-1134. CMP 2001:07
  • 12. Johann Pfanzagl, Parametric statistical theory, de Gruyter Textbook, Walter de Gruyter & Co., Berlin, 1994. With the assistance of R. Hamböker. MR 1291393
  • 13. Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
  • 14. Eberhard Siebert, Pairwise sufficiency, Z. Wahrsch. Verw. Gebiete 46 (1979), no. 3, 237–246. MR 521703, 10.1007/BF00538112
  • 15. TORGERSEN, E. (1965). Minimal sufficiency of order statistics in the case of translation- and scale parameters. Skand. Aktuarietidsskrift 48, 16-21.
  • 16. Erik Torgersen, Comparison of statistical experiments, Encyclopedia of Mathematics and its Applications, vol. 36, Cambridge University Press, Cambridge, 1991. MR 1104437
  • 17. Hermann Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939. MR 0000255

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 62B05, 62G30, 28A35

Retrieve articles in all journals with MSC (2000): 62B05, 62G30, 28A35

Additional Information

Lutz Mattner
Affiliation: Department of Statistics, University of Leeds, Leeds LS2 9JT, United Kingdom

Keywords: Comparison of $\sigma$-algebras, nonparametric models, permutation invariance, symmetric sets
Received by editor(s): November 13, 1999
Received by editor(s) in revised form: March 30, 2000
Published electronically: May 10, 2001
Communicated by: Wei Y. Loh
Article copyright: © Copyright 2001 American Mathematical Society