Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The structure of quantum spheres


Author: Albert Jeu-Liang Sheu
Journal: Proc. Amer. Math. Soc. 129 (2001), 3307-3311
MSC (2000): Primary 46L05; Secondary 17B37, 46L89, 47B35, 58B32, 81R50
DOI: https://doi.org/10.1090/S0002-9939-01-06042-7
Published electronically: April 2, 2001
MathSciNet review: 1845007
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We show that the C*-algebra $C\left(\mathbb{S} _{q}^{2n+1}\right)$ of a quantum sphere $\mathbb{S} _{q}^{2n+1}$, $q>1$, consists of continuous fields $\left\{f_{t}\right\}_{t\in\mathbb{T} }$ of operators $f_{t}$ in a C*-algebra $\mathcal{A}$, which contains the algebra $\mathcal{K}$ of compact operators with $\mathcal{A}/\mathcal{K}\cong C\left( \mathbb{S} _{q} ^{2n-1}\right) $, such that $\rho_{\ast}\left( f_{t}\right) $ is a constant function of $t\in\mathbb{T} $, where $\rho_{\ast}:\mathcal{A}\rightarrow \mathcal{A}/\mathcal{K}$ is the quotient map and $\mathbb{T} $ is the unit circle.


References [Enhancements On Off] (What's this?)

  • [CM] R. E. Curto and P. S. Muhly, C*-algebras of multiplication operators on Bergman spaces, J. Funct. Anal. 64 (1985), 315-329. MR 86m:47044
  • [D] V. G. Drinfeld, On Poisson homogeneous spaces of Poisson Lie groups, Theo. Math. Phys. 95 (1993), 226-227. MR 94k:58045
  • [MR] P. S. Muhly and J. N. Renault, C*-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982), 1-44. MR 84h:46074
  • [N] G. Nagy, On the Haar measure of the quantum $SU(N)$group, Comm. Math. Phys. 153 (1993), 217-228. MR 94e:46124
  • [P] G. K. Pedersen, ``C*-algebras and their Automorphism Groups'', Academic Press, New York, 1979. MR 81e:46037
  • [R] J. Renault, A Groupoid Approach to C*-algebras, Lecture Notes in Mathematics, Vol. 793, Springer-Verlag, New York, 1980. MR 82h:46075
  • [SaShU] N. Salinas, A. J. L. Sheu, and H. Upmeier, Toeplitz operators on pseudoconvex domains and foliation C*-algebras, Annals of Mathematics 130 (1989), 531-565. MR 91e:47026
  • [Sh1] A. J. L. Sheu, Reinhardt domains, boundary geometry and Toeplitz C*-algebras, J. Func. Anal. 92 (1990), 264-311. MR 92a:46068
  • [Sh2] -, Compact quantum groups and groupoid C*-algebras, J. Func. Anal. 144 (1997), 371-393. MR 98e:46090
  • [Sh3] -, Quantum spheres as groupoid C*-algebras, Quarterly J. Math. 48 (1997), 503-510. MR 99b:46112
  • [VSo] L. L. Vaksman and Ya. S. Soibelman, The algebra of functions on the quantum group $SU(n+1)$, and odd-dimensional quantum spheres, Leningrad Math. J. 2 (1991), 1023-1042. MR 92e:58021
  • [W] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523-557. MR 86i:58059

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L05, 17B37, 46L89, 47B35, 58B32, 81R50

Retrieve articles in all journals with MSC (2000): 46L05, 17B37, 46L89, 47B35, 58B32, 81R50


Additional Information

Albert Jeu-Liang Sheu
Affiliation: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
Email: sheu@falcon.cc.ukans.edu

DOI: https://doi.org/10.1090/S0002-9939-01-06042-7
Keywords: Quantum spheres, quantum groups, groupoid C*-algebras, Toeplitz algebras
Received by editor(s): March 15, 2000
Published electronically: April 2, 2001
Additional Notes: The author was partially supported by NSF Grant DMS-9623008
Communicated by: David R. Larson
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society