Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Regularity properties of distributions and ultradistributions


Authors: S. Pilipovic and D. Scarpalezos
Journal: Proc. Amer. Math. Soc. 129 (2001), 3531-3537
MSC (2000): Primary 46F05, 46F30, 03C20
DOI: https://doi.org/10.1090/S0002-9939-01-06013-0
Published electronically: June 28, 2001
MathSciNet review: 1860484
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We give necessary and sufficient conditions for a regularized net of a distribution in an open set $\Omega$which imply that it is a smooth function or $C^k$ function in $\Omega$. We also give necessary and sufficient conditions for an ultradistribution to be an ultradifferentiable function of corresponding class.


References [Enhancements On Off] (What's this?)

  • 1. H. A. Biagioni, A Nonlinear Theory of Generalized Functions, Springer-Verlag, Berlin-Heildelberg-New York, 1990. MR 91g:46047
  • 2. J. F. Colombeau, New Generalized Functions and Multiplication of Distributions, North Holland, 1984. MR 86c:46042
  • 3. Yu. V. Egorov, On the theory of generalized functions, Russian Math. Surveys 45:5 (1990), 1-49. translated from Uspehi Mat. Nauk 45;5 (1990), 3-40. MR 92d:46097
  • 4. R. Estrada, R. P. Kanwal, Asymptotic Analysis,: A Distributional Approach, Birkhäuser, Boston, 1994. MR 95g:46071
  • 5. L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin - Heidelberg - New York - Tokyo (1983). MR 85g:35002a
  • 6. H. Komatsu, Ultradistributions, I - III, J. Fac. Sci. Univ. Tokyo, Sect. IA 20(1973), 25-105; 24(1977) 607 - 628; 29(1982), 653 - 717. MR 84d:46051
  • 7. H. Komatsu, Microlocal Analysis in Gevrey Classes and in Convex Domains, Springer, Lec. Not. Math. 1726(1989), 426 - 493.
  • 8. M. Oberguggenberger, Multiplications of Distributions and Applications to Partial Differential Equations, Longman, 1992. MR 94d:46044
  • 9. H. J. Petzsche, Generalized Functions and the Boundary Values of Holomorphic Functions, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), 391-431. MR 85k:46048
  • 10. S. Pilipovic, Microlocal Analysis of Ultradistributions, Proc. AMS, 126(1998), 105-113. MR 98i:46038
  • 11. S. Pilipovic, D. Scarpalezos, Colombeau Generalized Ultradistributions, Math. Proc. Camb. Phil. Soc., 130(2001), 541-553. CMP 2001:09

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46F05, 46F30, 03C20

Retrieve articles in all journals with MSC (2000): 46F05, 46F30, 03C20


Additional Information

S. Pilipovic
Affiliation: Institute of Mathematics, University of Novi Sad, Trg D.Obradovića 4, 21000 Novi Sad, Yugoslavia

D. Scarpalezos
Affiliation: U.F.R. de Mathématiques, Universite Paris 7, 2 place Jussieu, Paris 5$\buildrel e \over{}$, 75005, France

DOI: https://doi.org/10.1090/S0002-9939-01-06013-0
Received by editor(s): February 21, 2000
Published electronically: June 28, 2001
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society