Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Chern numbers of almost complex manifolds


Author: Hansjörg Geiges
Journal: Proc. Amer. Math. Soc. 129 (2001), 3749-3752
MSC (2000): Primary 57R20, 32Q60
DOI: https://doi.org/10.1090/S0002-9939-01-06027-0
Published electronically: May 7, 2001
MathSciNet review: 1860512
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

It is shown that any system of numbers that can be realised as the system of Chern numbers of an almost complex manifold of dimension $2n$, $n\geq 2$, can also be realised in this way by a connected almost complex manifold. This answers an old question posed by Hirzebruch.


References [Enhancements On Off] (What's this?)

  • 1. M. Audin, Exemples de variétés presque complexes, Enseign. Math. (2) 37 (1991), 175-190. MR 92g:53024
  • 2. W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3) vol. 4, Springer, Berlin, 1984. MR 86c:32026
  • 3. R.E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), 527-595. MR 96j:57025
  • 4. M. Halic, On the geography of symplectic $6$-manifolds, Manuscripta Math. 99 (1999), 371-381. MR 2000f:57027
  • 5. F. Hirzebruch, Komplexe Mannigfaltigkeiten, Proc. Internat. Congress Math. 1958, Cambridge University Press, 1960, pp. 119-136. MR 23A:1055
  • 6. -, Topological Methods in Algebraic Geometry, Classics Math., Springer, Berlin, 1995. MR 96c:57002
  • 7. B. Johnston, The values of the Milnor genus on smooth projective connected complex varieties, preprint, University of Michigan.
  • 8. P.J. Kahn, Obstructions to extending almost $X$-structures, Illinois J. Math. 13 (1969), 336-357. MR 41:2684
  • 9. W.S. Massey, Obstructions to the existence of almost complex structures, Bull. Amer. Math. Soc. 67 (1961), 559-564. MR 24A:2971
  • 10. S. Müller and H. Geiges, Almost complex structures on $8$-manifolds, Enseign. Math. (2) 46 (2000), 95-107. CMP 2000:15
  • 11. Ch. Okonek and A. Van de Ven, Cubic forms and complex $3$-folds, Enseign. Math. (2) 41 (1995), 297-333. MR 97b:32035
  • 12. N. Ray, On a construction in bordism theory, Proc. Edinburgh Math. Soc. (2) 29 (1986), 413-422. MR 88a:57065
  • 13. A. Van de Ven, On the Chern numbers of certain complex and almost complex manifolds, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 1624-1627. MR 33:6651

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57R20, 32Q60

Retrieve articles in all journals with MSC (2000): 57R20, 32Q60


Additional Information

Hansjörg Geiges
Affiliation: Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, The Netherlands
Email: geiges@math.leidenuniv.nl

DOI: https://doi.org/10.1090/S0002-9939-01-06027-0
Received by editor(s): May 2, 2000
Published electronically: May 7, 2001
Communicated by: Ralph Cohen
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society