FINITE GROUPS AND THE FIXED POINTS OF COPRIME AUTOMORPHISMS

PAVEL SHUMYATSKY

(Communicated by Stephen D. Smith)

Abstract. Let \(p \) be a prime, and let \(G \) be a finite \(p' \)-group acted on by an elementary abelian \(p \)-group \(A \). The following results are proved:

1. If \(|A| \geq p^3 \) and \(C_G(a) \) is nilpotent of class at most \(c \) for any \(a \in A^\# \), then the group \(G \) is nilpotent of \(\{c,p\} \)-bounded class.

2. If \(|A| \geq p^4 \) and \(C_G(a)' \) is nilpotent of class at most \(c \) for any \(a \in A^\# \), then the derived group \(G' \) is nilpotent of \(\{c,p\} \)-bounded class.

1. Introduction

Let \(G \) be a group admitting an action of a group \(A \). We denote by \(C_G(A) \) the set \(C_G(A) = \{ x \in G | x^a = x \text{ for any } a \in A \} \), the centralizer of \(A \) in \(G \) (the fixed-point group). Throughout this paper we assume that \(A \) is a noncyclic elementary abelian \(p \)-group, and \(G \) is a finite \(p' \)-group. Let \(A^\# \) denote the set of non-identity elements of \(A \). It follows from the classification of finite simple groups that if \(C_G(a) \) is solvable for any \(a \in A^\# \), then so is the group \(G \) (see [3]). The case \(|A| \geq p^3 \) does not require the classification: the result follows from Glauberman’s theorem on solvable signalizer functors [1]. In certain specific situations much more can be said about the structure of \(G \).

Ward showed that if \(A \) has rank at least 3, and if \(C_G(a) \) is nilpotent for any \(a \in A^\# \), then the group \(G \) is nilpotent [7]. Another of Ward’s results is that if \(A \) has rank at least 4, and if \(C_G(a)' \) is nilpotent for any \(a \in A^\# \), then the derived group \(G' \) is nilpotent [8]. Later the author found that if, under these assumptions, \(C_G(a) \) is nilpotent of class at most \(c \) (respectively \(C_G(a)' \) is nilpotent of class at most \(c \)) for any \(a \in A^\# \), and if \(G \) has derived length \(d \), then the nilpotency class of \(G \) (respectively of \(G' \)) is \(\{c,d,p\} \)-bounded [6]. In the present paper we show that actually much stronger results are valid: the bounds on the class of \(G \) and \(G' \) can be chosen independent of \(d \).

Theorem 1.1. Let \(A \) be an elementary abelian group of order \(p^3 \) acting on a finite \(p' \)-group \(G \). Assume that \(C_G(a) \) is nilpotent of class at most \(c \) for any \(a \in A^\# \). Then \(G \) is nilpotent and the class of \(G \) is bounded by a function depending only on \(p \) and \(c \).
Theorem 1.2. Let A be an elementary abelian group of order p^4 acting on a finite p'-group G. Assume $C_L(a)^{t}$ is nilpotent of class at most c for any $a \in A^\#$. Then G' is nilpotent and the class of G' is bounded by a function depending only on p and c.

We conjecture that these results can be generalized in the following way.

Conjecture 1.3. Let A be an elementary abelian group of order p^k with $k \geq 3$ acting on a finite p'-group G.

1. If $\gamma_{k-2}(C_G(a))$ is nilpotent of class at most c for any $a \in A^\#$, then $\gamma_{k-2}(G)$ is nilpotent and has (c, k, p)-bounded class.

2. If, for some integer d such that $2^d + 2 \leq k$, the dth derived group of $C_G(a)$ is nilpotent of class at most c for any $a \in A^\#$, then the dth derived group $G^{(d)}$ is nilpotent and has (c, k, p)-bounded class.

Our main evidence in favor of the above conjecture is Lie-theoretic: Theorem 2.7 obtained in Section 2 establishes the corresponding results for Lie algebras.

2. Action on Lie algebras

Throughout the paper the term Lie algebra means Lie algebra over an associative ring with unity. Let L be a Lie algebra. If X, Y, X_1, \ldots, X_s are subsets of L we use $[X, Y]$ to denote the subspace of L spanned by the set $\{[x, y]|x \in X, y \in Y\}$. If $t \geq 2$ we write $[X, tY]$ for $[[X, t-1Y], Y]$ and $[X_1, \ldots, X_t]$ for $[[X_1, \ldots, X_{t-1}], X_t]$. For any positive integer w, define commutator-spaces of weight w in X_1, \ldots, X_s:

A subspace of L is a commutator-space of weight 1 in X_1, \ldots, X_s if and only if it is the linear span of X_i for some $i \leq s$. A subspace M of L is a commutator-space of weight $w \geq 2$ in X_1, \ldots, X_s if and only if $M = [M_1, M_2]$, where M_1 and M_2 are commutator-spaces of weights w_1 and w_2 respectively, such that $w_1 + w_2 = w$.

A well-known theorem of Kreknin [5] says that if a Lie ring L admits a fixed-point-free automorphism of finite order n, then L is solvable and the derived length of L is bounded by a function of n. We will require the following extension of this result [3].

Theorem 2.1. Let a Lie ring L admit an automorphism α of finite order n such that $[L, tC_L(a)] = 0$. Assume that $nL = L$. Then L is solvable with derived length at most $(t + 1)^{n-1} + \log_2 t$.

Lemma 2.2. Let $t \geq 1$. Let L be a Lie algebra, and K a nilpotent subalgebra of class c. Assume K is generated by subspaces X_1, \ldots, X_m such that for any commutator-space Y in X_1, \ldots, X_m we have $[L, tY] = 0$. Then there exists a (c, m, t)-bounded number u such that $[L, uK] = 0$.

Proof. This is by induction on c. Since K' is generated by commutator-spaces of weight ≥ 2 in X_1, \ldots, X_m and since the number of such spaces is (c, m)-bounded, the inductive hypothesis will be that there exists a (c, m, t)-bounded number u_1 such that $[L, u_1K'] = 0$. Now put $r = m(t - 1) + 1$ and consider the space $M = [L, Y_1, \ldots, Y_r]$ for some choice of $Y_1, \ldots, Y_r \in \{X_1, \ldots, X_m\}$. Obviously, for any permutation τ of the symbols $1, 2, \ldots, r$ we have $M \leq [L, Y_{\tau(1)}, \ldots, Y_{\tau(r)}] + [L, K']$. The number r is big enough to ensure that some X_i occurs in the list Y_1, \ldots, Y_r at least t times. Thus, we obtain $M \leq [L, tX_i, \ast, \ast] + [L, K']$, where the asterisks denote some spaces Y_j which, in view of the fact that $[L, tX_i] = 0$, are of no consequence. Hence, $M \leq [L, K']$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now take \(u = u_1 r \). Using the fact that \(K = K' + \sum X_j \) and \(M \leq [L, K'] \) for any choice of \(Y_1, \ldots, Y_r \in \{X_1, \ldots, X_m\} \), it is easy to see that \([L, u_1 K'] = 0\).

Hypothesis 2.3. Let \(\omega \) be a primitive \(p \)-th root of unity, and let \(L \) be a Lie algebra over \(\mathbb{Z}[\omega] \) such that \(L = pL \). Let \(A \) be an elementary abelian group of order \(p^k \) acting by automorphisms on \(L \). Let \(\hat{A} \) be the character group of \(A \). For any \(\alpha \in \hat{A} \) we set \(L_\alpha = \{x \in K | x^a = \alpha(a)x \text{ for each } a \in A\} \).

It is well-known that \(A \) and \(\hat{A} \) are isomorphic, \([L_\alpha, L_\beta] \leq L_{\alpha \beta} \) for all \(\alpha, \beta \in \hat{A} \) and \(L = \bigoplus_\alpha L_\alpha \). For any positive integer \(n \) and any \(\alpha_1, \ldots, \alpha_{2^n} \in \hat{A} \) define inductively

\[
\gamma(\alpha_1) = L_{\alpha_1} \text{ and } \gamma(\alpha_1, \ldots, \alpha_n) = [\gamma(\alpha_1, \ldots, \alpha_{n-1}), L_{\alpha_n}],
\]

\[
\delta(\alpha_1) = L_{\alpha_1} \text{ and } \delta(\alpha_1, \ldots, \alpha_{2^n}) = [\delta(\alpha_1, \ldots, \alpha_{2^{n-1}}), \delta(\alpha_{2^{n-1}+1}, \ldots, \alpha_{2^n})].
\]

As usual, \(\gamma_n(L) \) and \(L^{(n)} \) denote the \(n \)-th term of the lower central series and the \(n \)-th term of the derived series of \(L \), respectively.

Lemma 2.4. Under Hypothesis 2.3 we have \(\gamma_n(L) = \sum \gamma(\alpha_1, \ldots, \alpha_n) \) and \(L^{(n)} = \sum \delta(\alpha_1, \ldots, \alpha_{2^n}) \), where \(\alpha_1, \ldots, \alpha_{2^n} \) range independently through \(\hat{A} \).

Proof. Set \(Q = \sum \gamma(\alpha_1, \ldots, \alpha_n) \). For any \(\beta \in \hat{A} \) we have

\[
[\gamma(\alpha_1, \ldots, \alpha_n), L_\beta] \leq \gamma(\alpha_1 \alpha_2, \alpha_3, \ldots, \alpha_n, \beta) \leq Q,
\]

which shows that \(Q \) is normalized by \(L_\beta \) and therefore is an ideal of \(L \). It is easy to see that \(L/Q \) is nilpotent of class at most \(n - 1 \) and so \(\gamma_n(L) \leq Q \). The opposite inclusion is obvious, whence \(\gamma_n(L) = Q \).

To prove the other claim we set \(R_n = \sum \delta(\alpha_1, \ldots, \alpha_{2^n}) \) and, arguing by induction on \(n \), assume that \(R_{n-1} = L^{(n-1)} \). We now need to show that \(R_n = R_n' \), where \(R_n = R_n' \). For any \(\beta_1, \ldots, \beta_{2^{n-1}} \in \hat{A} \) we see that

\[
[\delta(\alpha_1, \ldots, \alpha_{2^n}), \delta(\beta_1, \ldots, \beta_{2^{n-1}})] \leq R_n,
\]

which shows that \(\delta(\beta_1, \ldots, \beta_{2^{n-1}}) \) normalizes \(R_n \). Therefore \(R_n \) is an ideal in \(R_{n-1} \) and it follows that \(R_n = R_n' \).

Corollary 2.5. Assume Hypothesis 2.3. Then, for any \(\beta \in \hat{A} \), we have \(L_\beta \cap \gamma_n(L) = \sum \gamma(\alpha_1, \ldots, \alpha_n) \), where the summation is taken over those \(\alpha_1, \ldots, \alpha_n \in \hat{A} \) for which \(\alpha_1 \ldots \alpha_n = \beta \). Similarly, \(L_\beta \cap L^{(n)} = \sum \delta(\alpha_1, \ldots, \alpha_{2^n}) \), where \(\alpha_1 \ldots \alpha_{2^n} = \beta \).

Lemma 2.6. Assume Hypothesis 2.3 with \(k \geq 2 \). Suppose there exists an integer \(u \) such that \([L, uC_L(a)] = 0\) for any \(a \in A^\# \). Then \(L \) is nilpotent of \(\{p, u\} \)-bounded class.

Proof. By Theorem 2.4 \(L \) is solvable and the derived length \(d \) of \(L \) is at most \((u + 1)^{p - 1} + \log_2 u\). We will prove the lemma by induction on \(d \). Applying the inductive hypothesis to \(L' \) assume that \(L' \) is nilpotent of \(\{p, u\} \)-bounded class, say.
Let B be any subgroup of A of order p^2, and let B_1, \ldots, B_{p+1} be the cyclic subgroups of B. We set $C_i = C_L(B_i)$, $1 \leq i \leq p + 1$. Then $L = \sum_i C_i$. Let $r = (u-1)(p+1) + 1$. If $Z = Z(L)$ we obviously have $[Z, X, Y] = [Z, Y, X]$ for any subsets X, Y of L. Having this in mind we write

$$[Z, rL] = [Z, r \sum_i C_i] = \sum [Z, u_1 C_1, \ldots, u_{p+1} C_{p+1}],$$

where $u_1 + u_2 + \ldots + u_{p+1} = r$. The number r is big enough to ensure that $u_i \geq u$ for some i, so it follows that $[Z, u_1 C_1, \ldots, u_{p+1} C_{p+1}] = 0$ since $L, u C_i = 0$. Thus, $[Z, rL] = 0$ and therefore $Z \leq Z_r(L)$, where $Z_r(L)$ is the rth term of the upper central series of L. Applying this argument repeatedly to $L/Z, L/Z_2(K)$ and so on, we conclude that $L' \leq Z_{er}(L)$ and therefore L is of nilpotency class at most $er + 1$.

Theorem 2.7. Assume Hypothesis 2.3 with $k \geq 3$.

1. If $\gamma_{k-2}(C_L(a))$ is nilpotent of class at most c for any $a \in A^\#$, then $\gamma_{k-2}(L)$ is nilpotent and has (c, k, p)-bounded class.

2. If, for some integer d such that $2^d + 2 \leq k$, the dth derived group of $C_L(a)$ is nilpotent of class at most c for any $a \in A^\#$, then $L^{(d)}$ is nilpotent and has (c, k, p)-bounded class.

Proof. 1. Obviously, for any $\beta, \alpha_1, \ldots, \alpha_{k-2} \in \hat{A}$ there exists $a \in A^\#$ such that $L_\beta, L_{\alpha_1}, \ldots, L_{\alpha_{k-2}} \leq C_L(a)$. Since $\gamma_{k-2}(C_L(a))$ is nilpotent of class at most c, it follows that $[L_{\beta c+2} \gamma_{1, \alpha_1, \ldots, \alpha_{k-2}}] = 0$. Now, using that $L = \bigoplus \beta L_\beta$, we derive that $[L, c+2 \gamma_{1, \alpha_1, \ldots, \alpha_{k-2}}] = 0$. Corollary 2.5 shows that $C_L(a) \cap \gamma_{k-2}(L) = \gamma_{1, \alpha_1, \ldots, \alpha_{k-2}}$, where the summation is taken over all those $\alpha_1, \ldots, \alpha_{k-2}$ for which $\alpha_1 \ldots \alpha_{k-2} = 1$. We now apply Lemma 2.2 with $K = C_L(a) \cap \gamma_{k-2}(L)$ and the spaces $\gamma_{1, \alpha_1, \ldots, \alpha_{k-2}} \leq C_L(a)$ in place of X_i to deduce that there exists a (c, k, p)-bounded number u such that $L, u K = 0$. But then it follows from Lemma 2.6 that $\gamma_{k-2}(L)$ is nilpotent of (p, u)-bounded class.

2. The proof of the second claim is not really much different from what we have done above. We establish first that $[L, c+2 \delta_{1, \alpha_1, \alpha_2}] = 0$ for all $\alpha_1, \alpha_2 \in \hat{A}$. Next, we apply Lemma 2.2 to deduce that there exists a (c, k, p)-bounded number u such that $[L, u C_{L \alpha_1}(a)] = 0$ for all $a \in A$. Finally, we observe that the required assertion follows from Lemma 2.6.

3. **Main results**

The next lemma is well-known (see [2] 6.2.2, 6.2.4 for the proof).

Lemma 3.1. Let A be a finite p-group acting on a finite p'-group G.

1. If N is an A-invariant normal subgroup of G, then $C_{G/N}(A) = C_G(A)N/N$.

2. If A is an elementary abelian group, and if A_1, \ldots, A_s are the maximal subgroups of A, then $G = \{ C_G(A_i) | 1 \leq i \leq s \}$.

Lemma 3.2. Let p be a prime, and G a finite p'-group acted on by an elementary abelian p-group A of rank at least 3. Let A_1, \ldots, A_s be the maximal subgroups of A. Then

$$G' = \langle C_G(A_i), C_G(A_j) | 1 \leq i, j \leq s \rangle.$$
Proof. By Lemma 3.1, \(G = \langle C_G(A_1), \ldots, C_G(A_s) \rangle \). Consider the subgroup \(R = \langle [C_G(A_i), C_G(A_j)] | 1 \leq i, j \leq s \rangle \). Obviously, \(R \) is \(A \)-invariant so \(R = \langle C_R(A_1), \ldots, C_R(A_s) \rangle \). To show that \(R \) is normal it is sufficient to establish that \(y^r \in R \) for any \(y \in C_R(A_i) \) and \(x \in C_G(A_j) \). We have \(y^r = y^r y^{-1} y \) and obviously both \(y^r y^{-1} \) and \(y \) belong to \(R \). Hence \(y^r \in R \) and \(R \) is normal. Using that \(G = \langle C_G(A_1), \ldots, C_G(A_s) \rangle \), it is now easy to see that \(G/R \) is abelian, as required.

We are now ready to prove the main results.

Theorem 1.1. Let \(A \) be an elementary abelian group of order \(p^3 \) acting on a finite \(p' \)-group \(G \). Assume that \(C_G(a) \) is nilpotent of class at most \(c \) for any \(a \in A^\# \). Then \(G \) is nilpotent and the class of \(G \) is bounded by a function depending only on \(p \) and \(c \).

Proof. We know from Ward’s result cited in the Introduction that \(G \) is nilpotent. Let \(L(G) \) be the Lie ring corresponding to the lower central series of \(G \). The construction associating the Lie ring with \(G \) is well-known. Let \(\gamma_i \) denote the \(i \)th term of the lower central series of \(G \). Set \(L_i = \gamma_i/\gamma_{i+1} \) and view \(L_i \) as an additive abelian group. Then \(L(G) = \bigoplus L_i \). If \(x \in \gamma_i \), \(y \in \gamma_j \), then, for corresponding elements \(x\gamma_{i+1}, y\gamma_{j+1} \) of \(L(G) \), we set \([x\gamma_{i+1}, y\gamma_{j+1}] = [x, y]\gamma_{i+j+1} \). This operation can be uniquely extended by linearity on the additive abelian group \(L(G) \) and, equipped with the product, \(L(G) \) becomes a Lie ring. The Lie ring has the same nilpotency class as \(G \). In our situation the group \(A \) acts naturally on each quotient \(\gamma_i/\gamma_{i+1} \) and this action extends uniquely to an action by automorphisms on the Lie ring \(L(G) \). Lemma 3.1 shows that if \(a \in A \), then \(C_{L(G)}(a) \) is the direct sum of the quotients \(\gamma_i(a)\gamma_{i+1}/\gamma_{i+1} \). It follows that \(C_{L(G)}(a) \) is nilpotent of class at most \(c \) for any \(a \in A^\# \). Finally, we note that \(L(G) \) is finite and has the same order as \(G \). Therefore \(pL(G) = L(G) \). Set \(L = L(G) \otimes \mathbb{Z}[\omega] \). We can view \(L \) as a Lie algebra over \(\mathbb{Z}[\omega] \) and \(A \) as a group acting on \(L \). By Theorem 2.7 \(L \) is nilpotent of \(\{c, p\}\)-bounded class and so is \(G \).

Theorem 1.2. Let \(A \) be an elementary abelian group of order \(p^4 \) acting on a finite \(p' \)-group \(G \). Assume \(C_L(a) \) is nilpotent of class at most \(c \) for any \(a \in A^\# \). Then \(G' \) is nilpotent and the class of \(G' \) is bounded by a function depending only on \(p \) and \(c \).

Proof. Let \(A_1, \ldots, A_s \) be the maximal subgroups of \(A \). Then, by Lemma 4.2 \(G' = \langle [C_G(A_i), C_G(A_j)] | 1 \leq i, j \leq s \rangle \). We know that \(G' \) is nilpotent. Let \(L(G') \) be the Lie ring corresponding to the lower central series of \(G' \). Set \(L = L(G') \otimes \mathbb{Z}[\omega] \). We will view \(L \) as a Lie algebra over \(\mathbb{Z}[\omega] \) and \(A \) as a group acting on \(L \). By Theorem 2.7 \(L' \) is nilpotent of \(\{c, p\}\)-bounded class, say \(e \). Let \(X_1, \ldots, X_e \) be the images of various subgroups of the form \([C_G(A_i), C_G(A_j)] \) in \(G'/G'' \). So \(L \) is generated by the sets \(X_1, \ldots, X_e \). For any \(i, j, k \leq s \) we observe that there exists some \(a \in A^\# \) such that the centralizers \(C_G(A_i), C_G(A_j), C_G(A_k) \) are all contained in \(C_G(a) \). Therefore \([C_G(A_k), (c+2)C_G(A_i), C_G(A_j)] = 1 \). Now, if \(X_i \) is the image of \([C_G(A_i), C_G(A_j)] \) in \(G'/G'' \), it follows that \([C_G(A_k), (c+2)X_i] = 0 \), whence \([L, (c+2)X_i] = 0 \).

Set \(r = (c + 1) + 1 \). If \(Z = Z(L') \), we obviously have \([Z, X, Y] = [Z, Y, X] \) for any subsets \(X, Y \) of \(L \). Having this in mind, and taking into account that \(L \) is generated by the sets \(X_i \), we write

\[
[Z, L] = \sum [Z, u_1 X_1, \ldots, u_e X_e],
\]
where \(u_1 + u_2 + \cdots + u_t = r \). The number \(r \) is big enough to ensure that \(u_j \geq c + 2 \) for some \(j \), so it follows that \([Z, u_1 X_1, \ldots, u_t X_t] = 0 \) since \([L, c+2 X_j] = 0 \). Thus, \([Z, L] = 0 \) and therefore \(Z \leq Z_r(L) \), where \(Z_r(L) \) is the \(r \)th term of the upper central series of \(L \). Applying this argument repeatedly to \(L/Z, L/Z_2(K') \) and so on, we conclude that \(L' \leq Z_{cr}(L) \) and therefore \(L \) is of nilpotency class at most \(er + 1 \). \(\square \)

References