Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The sets of monomorphisms and of almost open operators between locally convex spaces


Authors: José Bonet and José A. Conejero
Journal: Proc. Amer. Math. Soc. 129 (2001), 3683-3690
MSC (2000): Primary 46A32, 46A03, 46H35, 47A05, 47L05
DOI: https://doi.org/10.1090/S0002-9939-01-06248-7
Published electronically: June 27, 2001
MathSciNet review: 1860503
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

If the set of monomorphisms between locally convex spaces is not empty, then it is an open subset of the space of all continuous and linear operators endowed with the topology of the uniform convergence on the bounded sets if and only if the domain space is normable. The corresponding characterization for the set of almost open operators is also obtained; it is related to the lifting of bounded sets and to the quasinormability of the domain space. Other properties and examples are analyzed.


References [Enhancements On Off] (What's this?)

  • 1. M. Akkar, Sur le groupe des éléments inversibles d'une algèbre bornologique convexe. $Q$-algèbres bornologiques convexes, C. R. Acad. Sc. Paris 300 (1985) 35-38. MR 86e:46040
  • 2. Y. A. Abramovich, C. D. Aliprantis and I. A. Polyrakis, Some remarks on surjective and bounded below operators, Atti Sem. Mat. Fis. Univ. Modena XLIV (1996) 455-464. MR 98b:47002
  • 3. S. K. Berberian, Lectures in functional analysis and operator theory, Springer (1974). MR 54:5775
  • 4. J. Bonet, On the identity $L(E,F)=LB(E,F)$ for pairs of locally convex spaces $E$ and $F$, Proc. Amer. Math. Soc. 99 (1987) 249-255. MR 88c:46009
  • 5. P. G. Casazza and N. J. Kalton, Generalizing the Paley-Wiener perturbation theory for Banach spaces, Proc. Amer. Math. Soc. 127 (1999) 519-527. MR 99c:47008
  • 6. S. Dierolf and D. N. Zarnadze, On homomorphisms between locally convex spaces, Note di Matematica XII (1992) 27-41. MR 95a:46003
  • 7. H. G. Garnir, M. De Wilde and J. Schmets, Analyse fonctionnelle I, Birkhäuser Verlag, Basel und Stuttgart (1968). MR 40:6222
  • 8. R. Harte, Invertibility and singularity for bounded linear operators, Marcel Dekker, New York and Basel (1988). MR 89d:47001
  • 9. R. E. Harte, Almost open mappings between normed spaces, Proc. Amer. Math. Soc. 90 (1984) 243-249. MR 85b:47024
  • 10. G. J. O. Jameson, Topology and normed spaces, Chapman and Hall, London (1974). MR 57:3828
  • 11. G. Köthe, Topological vector spaces I and II, Springer Verlag, Berlin-Heidelberg-New York (1969) and (1979). MR 40:1750; MR 81g:46001
  • 12. Kasahara, See Note p. 206, Bull. de la Soc. Math. France, Memory no. 31-3 (1972).
  • 13. J. Lindenstrauss and L. Tzafiri, Classical Banach spaces I: Sequence spaces, Ergebnisse Math. 92 (1977). MR 58:17766
  • 14. M. A. Miñarro, A characterization of quasinormable Köthe sequence spaces, Proc. Amer. Math. Soc. 123 (1995) 1207-1212. MR 95e:46006
  • 15. R. Meise and D. Vogt, Introduction to functional analysis, Clarendon Press, Oxford (1997). MR 98g:46001
  • 16. R. I. Ovsepian and A. Pe\lczynski, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in $\mathcal{L}^2$, Studia Mathematica 54 (1975) 149-159. MR 52:14942
  • 17. P. Pérez Carreras and J. Bonet, Barrelled locally convex spaces, North-Holland Math. Studies 131, Amsterdam (1987). MR 88j:46003
  • 18. W. Rudin, Functional analysis, McGraw-Hill, New York (1973). MR 51:1315
  • 19. D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. reine angew. Math. 345 (1983) 182-200. MR 85h:46007

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46A32, 46A03, 46H35, 47A05, 47L05

Retrieve articles in all journals with MSC (2000): 46A32, 46A03, 46H35, 47A05, 47L05


Additional Information

José Bonet
Affiliation: Departamento de Matemática Aplicada, ETS Arquitectura, Universidad Politécnica de Valencia, E-46071 Valencia, Spain
Email: jbonet@mat.upv.es

José A. Conejero
Affiliation: Departamento de Matemática Aplicada, Fac. Informatica, Universidad Politécnica de Valencia, E-46071 Valencia, Spain
Email: aconejero@mat.upv.es

DOI: https://doi.org/10.1090/S0002-9939-01-06248-7
Keywords: Bounded below operators, monomorphisms, almost open operators, locally convex spaces, quasinormable spaces
Received by editor(s): May 2, 2000
Published electronically: June 27, 2001
Additional Notes: The authors were partially supported by the project DGESIC, PB97-0333.
The second author was also supported by the Universidad Politécnica de Valencia, grant 19980998.
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society