Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Numerical bounds for critical exponents of crossing Brownian motion


Author: Mario V. Wüthrich
Journal: Proc. Amer. Math. Soc. 130 (2002), 217-225
MSC (2000): Primary 60K35, 82D30
DOI: https://doi.org/10.1090/S0002-9939-01-06017-8
Published electronically: May 22, 2001
MathSciNet review: 1855632
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We consider $d$-dimensional crossing Brownian motion in a truncated Poissonian potential conditioned to reach a fixed hyperplane at distance $L$from the starting point. The transverse fluctuation of the path is expected to be of order $L^\xi$. We prove that for $d\ge2$: $\xi \le 3/4$. As a second critical exponent we introduce $\chi^{(2)}$, which describes the fluctuations of naturally defined distance functions for crossing Brownian motion. The numerical bound we obtain is an improvement of Corollary 3.1 in Scaling identity for crossing Brownian motion in a Poissonian potential (Probab. Theory Related Fields 112 (1998), 299-319), resulting in $\chi^{(2)} \ge 1/5$ if $d=2$ and if the killing rate $\lambda$ is strictly positive ($\lambda>0$).


References [Enhancements On Off] (What's this?)

  • 1. BAIK, J., DEIFT, P. A., AND JOHANSSON, K.
    On the distribution of the length of the longest increasing subsequence of random permutations.
    J. Am. Math. Soc. 12, 4 (1999), 1119-1178. MR 2000e:05006
  • 2. HOWARD, C. D., AND NEWMAN, C. M.
    Euclidean models of first-passage percolation.
    Probab. Th. Rel. Fields 108 (1997), 153-170. MR 98g:60182
  • 3. HOWARD, C. D., AND NEWMAN, C. M.
    Geodesics and spanning trees for Euclidean first-passage percolation.
    Preprint (1999).
  • 4. JOHANSSON, K.
    Transversal fluctuations for increasing subsequences on the plane.
    Probab. Th. Rel. Fields 116 (2000), 445-456. CMP 2000:13
  • 5. KRUG, J., AND SPOHN, H.
    Kinetic roughening of growing surfaces.
    In Solids far from equilibrium, C. Godrèche, Ed. Cambridge University Press, 1991, pp. 479-582.
  • 6. LICEA, C., NEWMAN, C. M., AND PIZA, M. S. T.
    Superdiffusivity in first-passage percolation.
    Probab. Th. Rel. Fields 106 (1996), 559-591. MR 98a:60151
  • 7. NEWMAN, C. M., AND PIZA, M. S. T.
    Divergence of shape fluctuations in two dimensions.
    Ann. Prob. 23 (1995), 977-1005. MR 96g:82052
  • 8. SZNITMAN, A. S.
    Distance fluctuations and Lyapounov exponents.
    Ann. Prob. 24 (1996), 1507-1530.
  • 9. SZNITMAN, A. S.
    Brownian motion, obstacles and random media.
    Springer Monographs in Mathematics, Berlin-Heidelberg, 1998. CMP 2000:03
  • 10.UTHRICH, M. V.
    Fluctuation results for Brownian motion in a Poissonian potential.
    Ann. de l'IHP, Prob. et Stat. 34, 3 (1998), 279-308. MR 99h:60154
  • 11.UTHRICH, M. V.
    Scaling identity for crossing Brownian motion in a Poissonian potential.
    Probab. Th. Rel. Fields 112, 3 (1998), 299-319. MR 99k:60209
  • 12.UTHRICH, M. V.
    Superdiffusive behavior of two dimensional Brownian motion in a Poissonian potential.
    Ann. Prob. 26, 3 (1998), 1000-1015. MR 99h:60169

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60K35, 82D30

Retrieve articles in all journals with MSC (2000): 60K35, 82D30


Additional Information

Mario V. Wüthrich
Affiliation: Department of Mathematics, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
Address at time of publication: Winterthur Insurance, Roemerstrasse 17, P.O. Box 357, CH-8401 Winterthur, Switzerland
Email: mario.wuethrich@winterthur.ch

DOI: https://doi.org/10.1090/S0002-9939-01-06017-8
Keywords: Brownian motion, Poissonian potential, fluctutation, critical exponents, superdiffusivity
Received by editor(s): September 1, 1999
Received by editor(s) in revised form: May 24, 2000
Published electronically: May 22, 2001
Communicated by: Claudia M. Neuhauser
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society