The strong radical and finitedimensional ideals
Author:
Bertram Yood
Journal:
Proc. Amer. Math. Soc. 130 (2002), 139143
MSC (2000):
Primary 46H10; Secondary 16D25
Published electronically:
May 23, 2001
MathSciNet review:
1855630
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a semiprime Banach algebra with strong radical (intersection of its twosided modular maximal ideals). A minimal left or right ideal of is infinitedimensional if and only if . Thus all minimal onesided ideals in are finitedimensional if is strongly semisimple.
 1.
Emil
Artin, Cecil
J. Nesbitt, and Robert
M. Thrall, Rings with Minimum Condition, University of
Michigan Publications in Mathematics, no. 1, University of Michigan Press,
Ann Arbor, Mich., 1944. MR 0010543
(6,33e)
 2.
Frank
F. Bonsall and John
Duncan, Complete normed algebras, SpringerVerlag, New
YorkHeidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete,
Band 80. MR
0423029 (54 #11013)
 3.
J.
W. Calkin, Twosided ideals and congruences in the ring of bounded
operators in Hilbert space, Ann. of Math. (2) 42
(1941), 839–873. MR 0005790
(3,208c)
 4.
Leoni
Dalla, S.
Giotopoulos, and Nelli
Katseli, The socle and finitedimensionality of a semiprime Banach
algebra, Studia Math. 92 (1989), no. 2,
201–204. MR
986948 (90f:46079)
 5.
I.
N. Herstein, Noncommutative rings, The Carus Mathematical
Monographs, No. 15, Published by The Mathematical Association of America;
distributed by John Wiley & Sons, Inc., New York, 1968. MR 0227205
(37 #2790)
 6.
T.
W. Palmer, Classes of nonabelian, noncompact, locally compact
groups, Rocky Mountain J. Math. 8 (1978), no. 4,
683–741. MR
513952 (81j:22003), http://dx.doi.org/10.1216/RMJ197884683
 7.
Theodore
W. Palmer, Banach algebras and the general theory of *algebras.
Vol. I, Encyclopedia of Mathematics and its Applications,
vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and
Banach algebras. MR 1270014
(95c:46002)
 8.
C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, 1960. MR 22:5903
 9.
I.
E. Segal, The group algebra of a locally compact
group, Trans. Amer. Math. Soc. 61 (1947), 69–105. MR 0019617
(8,438c), http://dx.doi.org/10.1090/S00029947194700196174
 10.
M. R. F. Smythe, On problems of Olubummo and Alexander, Proc. Royal Irish Acad. 80A (1980), 6974.
 11.
Bertram
Yood, Ideals in topological rings, Canad. J. Math.
16 (1964), 28–45. MR 0158279
(28 #1505)
 12.
Bertram
Yood, Closed prime ideals in topological rings, Proc. London
Math. Soc. (3) 24 (1972), 307–323. MR 0298423
(45 #7475)
 13.
Bertram
Yood, Finitedimensional ideals in Banach algebras, Colloq.
Math. 63 (1992), no. 2, 295–301. MR 1180641
(93m:46052)
 1.
 E. Artin, C. J. Nesbitt and R. M. Thrall, Rings with minimum condition, Univ. of Michigan Press, Ann Arbor, Mich., 1944. MR 6:33e
 2.
 F. F. Bonsall and J. Duncan, Complete normed algebras, Springer, New York, 1973. MR 54:11013
 3.
 J. W. Calkin, Twosided ideals and congruences in the ring of bounded linear operators in Hilbert space, Ann. of Math. 42 (1941), 839873. MR 3:208c
 4.
 L. Dalla, S. Giotopoulos and N. Katseli, The socle and finitedimensionality of a semiprime Banach algebra, Studia Math. 92 (1989), 201204. MR 90f:46079
 5.
 I. N. Herstein, Noncommutative rings, Carus Math. Monographs 15, Math. Assoc. America, 1968. MR 37:2790
 6.
 T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), 683741. MR 81j:22003
 7.
 T. W. Palmer, Banach algebras and the general theory of algebras, vol. I, Cambridge LL. Press, 1994. MR 95c:46002
 8.
 C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, 1960. MR 22:5903
 9.
 I. E. Segal, The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61 (1947), 69105. MR 8:438c
 10.
 M. R. F. Smythe, On problems of Olubummo and Alexander, Proc. Royal Irish Acad. 80A (1980), 6974.
 11.
 B. Yood, Ideals in topological rings, Can. J. Math. 16 (1964), 2845. MR 28:1505
 12.
 , Closed prime ideals in topological rings, Proc. London Math. Soc. (3) 24 (1972), 307323. MR 45:7475
 13.
 , Finitedimensional ideals in Banach algebras, Colloq. Math. 63 (1992), 295301. MR 93m:46052
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
46H10,
16D25
Retrieve articles in all journals
with MSC (2000):
46H10,
16D25
Additional Information
Bertram Yood
Affiliation:
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
DOI:
http://dx.doi.org/10.1090/S000299390106049X
PII:
S 00029939(01)06049X
Received by editor(s):
January 7, 2000
Received by editor(s) in revised form:
June 10, 2000
Published electronically:
May 23, 2001
Communicated by:
Dale Alspach
Article copyright:
© Copyright 2001
American Mathematical Society
