The strong radical and finite-dimensional ideals

Author:
Bertram Yood

Journal:
Proc. Amer. Math. Soc. **130** (2002), 139-143

MSC (2000):
Primary 46H10; Secondary 16D25

DOI:
https://doi.org/10.1090/S0002-9939-01-06049-X

Published electronically:
May 23, 2001

MathSciNet review:
1855630

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a semi-prime Banach algebra with strong radical (intersection of its two-sided modular maximal ideals). A minimal left or right ideal of is infinite-dimensional if and only if . Thus all minimal one-sided ideals in are finite-dimensional if is strongly semi-simple.

**1.**E. Artin, C. J. Nesbitt and R. M. Thrall,*Rings with minimum condition*, Univ. of Michigan Press, Ann Arbor, Mich., 1944. MR**6:33e****2.**F. F. Bonsall and J. Duncan,*Complete normed algebras*, Springer, New York, 1973. MR**54:11013****3.**J. W. Calkin,*Two-sided ideals and congruences in the ring of bounded linear operators in Hilbert space*, Ann. of Math.**42**(1941), 839-873. MR**3:208c****4.**L. Dalla, S. Giotopoulos and N. Katseli,*The socle and finite-dimensionality of a semi-prime Banach algebra*, Studia Math.**92**(1989), 201-204. MR**90f:46079****5.**I. N. Herstein,*Noncommutative rings*, Carus Math. Monographs 15, Math. Assoc. America, 1968. MR**37:2790****6.**T. W. Palmer,*Classes of non-abelian, non-compact, locally compact groups*, Rocky Mountain J. Math. 8 (1978), 683-741. MR**81j:22003****7.**T. W. Palmer,*Banach algebras and the general theory of**-algebras*, vol. I, Cambridge LL. Press, 1994. MR**95c:46002****8.**C. E. Rickart,*General theory of Banach algebras*, Van Nostrand, Princeton, 1960. MR 22:5903**9.**I. E. Segal,*The group algebra of a locally compact group*, Trans. Amer. Math. Soc.**61**(1947), 69-105. MR**8:438c****10.**M. R. F. Smythe,*On problems of Olubummo and Alexander*, Proc. Royal Irish Acad. 80A (1980), 69-74.**11.**B. Yood,*Ideals in topological rings*, Can. J. Math.**16**(1964), 28-45. MR**28:1505****12.**-,*Closed prime ideals in topological rings*, Proc. London Math. Soc. (3)**24**(1972), 307-323. MR**45:7475****13.**-,*Finite-dimensional ideals in Banach algebras*, Colloq. Math.**63**(1992), 295-301. MR**93m:46052**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46H10,
16D25

Retrieve articles in all journals with MSC (2000): 46H10, 16D25

Additional Information

**Bertram Yood**

Affiliation:
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

DOI:
https://doi.org/10.1090/S0002-9939-01-06049-X

Received by editor(s):
January 7, 2000

Received by editor(s) in revised form:
June 10, 2000

Published electronically:
May 23, 2001

Communicated by:
Dale Alspach

Article copyright:
© Copyright 2001
American Mathematical Society