Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Incommensurability criteria for Kleinian groups


Author: James W. Anderson
Journal: Proc. Amer. Math. Soc. 130 (2002), 253-258
MSC (1991): Primary 57M50, 30F40; Secondary 20H10
DOI: https://doi.org/10.1090/S0002-9939-01-06076-2
Published electronically: April 26, 2001
MathSciNet review: 1855643
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

The purpose of this note is to present a criterion for an infinite collection of distinct hyperbolic 3-manifolds to be commensurably infinite. (Here, a collection of hyperbolic 3-manifolds is commensurably infinite if it contains representatives from infinitely many commensurability classes.) Namely, such a collection $\mathbf{M}$is commensurably infinite if there is a uniform upper bound on the volumes of the manifolds in $\mathbf{M}$.

There is a related criterion for an infinite collection of distinct finitely generated Kleinian groups with non-empty domain of discontinuity to be commensurably infinite. (Here, a collection of Kleinian groups is commensurably infinite if it is infinite modulo the combined equivalence relations of commensurability and conjugacy in $\operatorname{Isom}^+(\mathbf{H}^3)$.) Namely, such a collection $\mathbf{G}$ is commensurably infinite if there is a uniform bound on the areas of the quotient surfaces of the groups in $\mathbf{G}$.


References [Enhancements On Off] (What's this?)

  • 1. L. V. Ahlfors, `Finitely generated Kleinian groups', Am. J. Math. 86 (1964), 413-429.
  • 2. R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag Universitext, 1992. MR 94e:57015
  • 3. L. Bers, `Inequalities for finitely generated Kleinian groups', J. Analyse Math. 18 (1967), 23-41. MR 37:5383
  • 4. A. Borel, `Commensurability classes and volumes of hyperbolic $3$-manifolds', Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), pp. 1-33. MR 82j:22008
  • 5. L. Greenberg, `Commensurable groups of Moebius transformations', in Discontinuous groups and Riemann surfaces, ed. by L. Greenberg, Annals of Mathematics Studies 79, Princeton University Press, Princeton, 1974, 227-237.
  • 6. M. Gromov, `Hyperbolic manifolds according to Jø rgensen and Thurston', Séminaire Bourbaki $32^e$ année (1979-80), Lecture Notes in Mathematics 842, Springer-Verlag, pp. 1-14.
  • 7. C. Maclachlan and A. W. Reid, `Commensurability classes of arithmetic Kleinian groups and their Fuchsian subgroups, Math. Proc. Cam. Phil. Soc. 102 (1987), 251-257. MR 88j:20040
  • 8. G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 17, Springer-Verlag, New York, 1991. MR 92h:22021
  • 9. G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78, Princeton University Press, Princeton, 1973. MR 52:5874
  • 10. G. Prasad, `Strong rigidity in $\textbf{Q}$-rank 1 lattices', Invent. Math. 21 (1973), 255-286. MR 52:5875
  • 11. A. W. Reid, `A note of trace-fields of Kleinian groups', Bulletin L. M. S. 22 (1990), 349-352.
  • 12. W. D. Neumann and A. W. Reid, `Arithmetic of hyperbolic manifolds', Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin, 1992, 273-310. MR 94c:57024
  • 13. J. R. Stallings, `On torsion-free groups with infinitely many ends', Annals of Math. (2) 88 (1968), pp. 312-334. MR 37:4153
  • 14. R. G. Swan, `Groups of cohomological dimension one', J. Algebra 12 (1969), pp. 585-610. MR 39:1531
  • 15. W. P. Thurston, The geometry and topology of $3$-manifolds, lecture notes, Princeton University, 1978.
  • 16. H. C. Wang, `Topics in totally discontinuous groups', in Symmetric spaces, edited by W. M. Boothby and G. L. Weiss, Pure and Applied Mathematics 8, Marcel Dekker, Inc., New York, 1972, 460-485.
  • 17. R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics 81, Birkhäuser, Boston, 1984. MR 86j:22012

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57M50, 30F40, 20H10

Retrieve articles in all journals with MSC (1991): 57M50, 30F40, 20H10


Additional Information

James W. Anderson
Affiliation: Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, England
Email: j.w.anderson@maths.soton.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-01-06076-2
Keywords: Kleinian group, hyperbolic 3-manifold, commensurable
Received by editor(s): May 18, 2000
Published electronically: April 26, 2001
Communicated by: Jozef Dodziuk
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society