Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The root lattice $A^*_n$ and Ramanujan's circular summation of theta functions


Author: Kok Seng Chua
Journal: Proc. Amer. Math. Soc. 130 (2002), 1-8
MSC (2000): Primary 11B65, 11E20
DOI: https://doi.org/10.1090/S0002-9939-01-06080-4
Published electronically: May 3, 2001
MathSciNet review: 1855612
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We relate a formula of Ramanujan on the circular summation of the $n$th power of theta functions, $F_n(q)$, to the theta series of the root lattice $A^*_n$. We then use properties of the lattice to show that $F_n$ includes an $\operatorname{SL}_2(\mathbf{Z})$ modular form when $n$ is an odd perfect square as well as to derive a very simple expression for $F_9(q)$.


References [Enhancements On Off] (What's this?)

  • 1. Scott Ahlgren, The sixth, eighth, nineth and tenth powers of Ramanujan Theta Function, Proc. Amer. Math. Soc. 128 (2000), 1333-1338. MR 2000j:11030
  • 2. Bruce Berndt, Ramanujan's Theory of Theta Functions in Theta Functions from the Classical to Modern, M. Ram Murth, editor, CRM Proceedings and Lecture Notes Vol. 1, Amer. Math. Soc., Providence, 1993, 1-66. MR 94m:11054
  • 3. J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), 691-701. MR 91e:33012
  • 4. K. Chandrasekharan, Elliptic Functions, Springer-Verlag, Berlin, Heidelberg, 1985. MR 87e:11058
  • 5. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, New York, Berlin, 1988. MR 89a:11067
  • 6. Ken Ono, On the circular summation of the Eleventh Powers of Ramanujan's Theta Function, Journal of Number Theory 76 (1999), 62-65. MR 2000d:11059
  • 7. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. MR 89j:01078
  • 8. S. S. Rangachari, On a Result of Ramanujan on Theta Functions, Journal of Number Theory 48 (1994), 364-372. MR 95i:11038
  • 9. Seung Hwan Son, Circular Summation of Theta Functions in Ramanujan's Lost Notebook, preprint.
  • 10. Neil J. A. Sloane, Neil Sloane's On-Line Encyclopedia of Integer Sequence, http://www.att.research.com/ njas/sequences/index.html.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11B65, 11E20

Retrieve articles in all journals with MSC (2000): 11B65, 11E20


Additional Information

Kok Seng Chua
Affiliation: Institute of High Performance Computing, 89C Science Park Driver, #02-11/12 The Rutherford, Singapore 118261
Email: chuaks@ihpc.nus.edu.sg

DOI: https://doi.org/10.1090/S0002-9939-01-06080-4
Keywords: Ramanujan, theta functions, lattices
Received by editor(s): May 12, 2000
Published electronically: May 3, 2001
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society