Some characterizations of the automorphisms of and

Author:
Lajos Molnár

Journal:
Proc. Amer. Math. Soc. **130** (2002), 111-120

MSC (1991):
Primary 47B49, 46J10

Published electronically:
June 8, 2001

MathSciNet review:
1855627

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

We present some nonlinear characterizations of the automorphisms of the operator algebra and the function algebra by means of their spectrum preserving properties.

**1.**Line Baribeau and Thomas Ransford,*Non-linear spectrum-preserving maps*, Bull. London Math. Soc.**32**(2000), no. 1, 8–14. MR**1718765**, 10.1112/S0024609399006426**2.**Scott H. Hochwald,*Multiplicative maps on matrices that preserve the spectrum*, Proceedings of the 3rd ILAS Conference (Pensacola, FL, 1993), 1994, pp. 339–351. MR**1306985**, 10.1016/0024-3795(94)90409-X**3.**Ali A. Jafarian and A. R. Sourour,*Spectrum-preserving linear maps*, J. Funct. Anal.**66**(1986), no. 2, 255–261. MR**832991**, 10.1016/0022-1236(86)90073-X**4.**Jin Chuan Hou,*Rank-preserving linear maps on 𝐵(𝑋)*, Sci. China Ser. A**32**(1989), no. 8, 929–940. MR**1055310****5.**S. Kowalski and Z. Słodkowski,*A characterization of multiplicative linear functionals in Banach algebras*, Studia Math.**67**(1980), no. 3, 215–223. MR**592387****6.**David R. Larson and Ahmed R. Sourour,*Local derivations and local automorphisms of ℬ(𝒳)*, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 187–194. MR**1077437**, 10.1090/pspum/051.2/1077437**7.**L. Molnár,*2-local isometries of some operator algebras*, Proc. Edinb. Math. Soc., to appear.**8.**Lajos Molnár and Borut Zalar,*Reflexivity of the group of surjective isometries on some Banach spaces*, Proc. Edinburgh Math. Soc. (2)**42**(1999), no. 1, 17–36. MR**1669397**, 10.1017/S0013091500019982**9.**Tatjana Petek and Peter Šemrl,*Characterization of Jordan homomorphisms on 𝑀_{𝑛} using preserving properties*, Linear Algebra Appl.**269**(1998), 33–46. MR**1483518**, 10.1016/S0024-3795(97)00021-9**10.**Peter Šemrl,*Two characterizations of automorphisms on 𝐵(𝑋)*, Studia Math.**105**(1993), no. 2, 143–149. MR**1226624****11.**Peter Šemrl,*Local automorphisms and derivations on ℬ(ℋ)*, Proc. Amer. Math. Soc.**125**(1997), no. 9, 2677–2680. MR**1415338**, 10.1090/S0002-9939-97-04073-2

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47B49,
46J10

Retrieve articles in all journals with MSC (1991): 47B49, 46J10

Additional Information

**Lajos Molnár**

Affiliation:
Institute of Mathematics and Informatics, University of Debrecen, 4010 Debrecen, P.O. Box 12, Hungary

Email:
molnarl@math.klte.hu

DOI:
http://dx.doi.org/10.1090/S0002-9939-01-06172-X

Keywords:
Automorphism,
operator algebra,
function algebra,
spectrum

Received by editor(s):
January 25, 2000

Received by editor(s) in revised form:
May 31, 2000

Published electronically:
June 8, 2001

Additional Notes:
This research was supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. T030082, T031995, and by the Ministry of Education, Hungary, Reg. No. FKFP 0349/2000.

Communicated by:
David R. Larson

Article copyright:
© Copyright 2001
American Mathematical Society