ON SOME INEQUALITIES INVOLVING THE ZEROS AND WEIGHTED L^p NORMS OF POLYNOMIALS

LI-CHIEN SHEN

(Communicated by Juha M. Heinonen)

Abstract. Using Parseval’s identity and the Hardy-Littlewood-Pólya inequality on the maximal decreasing rearrangement, we establish some sharp inequalities involving the weighted L^p norm and the zeros of polynomials.

1. Introduction

Let $\{z_j\}$ be the zeros (counting the multiplicity) of the polynomial

$$p(z) = z^n + a_1 z^{n-1} + a_2 z^{n-2} + \cdots + a_n$$

and let

$$\|p\|_2 = \left(\frac{1}{2\pi} \int_0^{2\pi} |p(e^{it})|^2 dt \right)^{\frac{1}{2}}.$$

Recently, Kroo and Pritsker [1, Theorem 2.4] proved

Theorem A.

$$\prod_{j=1}^{n} (1 + |z_j|^2) \leq 2^{n-1} \|p\|_2^2.$$

The inequality is best possible and the equality is achieved if and only if

$$p(z) = z^n + a, \text{ where } |a| = 1.$$

Moreover

$$\|p\|_2^2 \leq 2^{-n} \left(\frac{2n}{n} \right) \prod_{j=1}^{n} (1 + |z_j|^2).$$

The inequality is best possible and the equality is achieved if and only if

$$p(z) = (z + a)^n, \text{ where } |a| = 1.$$

The main goal of this note is to establish the following generalization of (1.2).

Theorem 1. Let $w(t)$ be a non-negative weight function defined on $[-\pi, \pi]$ with the following properties:

1) $w(-t) = w(t)$,

2) $w(t)$ is monotonically decreasing on $[0, \pi]$, and

Received by the editors May 8, 2000.

2000 Mathematics Subject Classification. Primary 30C10, 41A17.

©2001 American Mathematical Society
(3) \(w(t) \) is integrable on \([-\pi, \pi]\).

Then, for \(c \geq 2 \),

\[
\|p\|_c \leq 2^{-\frac{c}{n}} \prod_{j=1}^{n} (1 + |z_j|^2)^{\frac{1}{2}} \|P^*\|_c,
\]

where \(P^*(z) = (1 + z)^n \) and \(\|p\|_c = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |p(e^{it})|^c w(t) dt \right)^{\frac{1}{c}}. \)

Since the letter \(p \) is reserved for polynomials, to avoid unnecessary confusion, the letter \(c \) takes the place of the standard letter \(p \) for the notation of the \(L^p \) norm.

The method used in [1] does not seem applicable in dealing with the weighted \(L^p \) norm, whence a completely different approach is employed in this work. In Section 3, we will give a very different proof of (1.1) based on a simple property of the Blaschke product and the Parseval identity.

2. Proof of Theorem 1

One key ingredient of the proof is based on the following extremal property of the decreasing symmetric rearrangements of non-negative functions (see [2, p. 278] for the definition of the symmetric rearrangement of a function).

Lemma 2.1. Let \(g_j \) be continuous and non-negative on the interval \([-a, a]\) and let \(g_j^* \) be the symmetrical rearrangement of \(g_j \). Then, for any measurable set \(E \subset [-a, a] \) of measure \(m(E) = 2c \) with \(c \leq a \),

\[
\int_E \prod g_j(x) dx \leq \int_{-c}^{c} \prod g_j^*(x) dx.
\]

The result is a slight generalization of Theorem 378 in [2, p. 278]. For the reader’s convenience we briefly outline the proof.

Proof. Let \(E_j \subset [-a, a], j = 1, 2, \ldots, n, \) be measurable and let \(K_{E_j}(x) \) be the characteristic functions of \(E_j \) and let \(E^* = [-c, c] \) and \(E_j^* = [-c_j, c_j] \), where \(2c_j = m(E_j) \). Then, the decreasing symmetric rearrangement of \(K_{E_j}(x) \) is \(K_{E_j}(x) \). Clearly, we have

\[
\int_E \prod K_{E_j}(x) dx = m \left(\bigcap_{j=1}^{n} E_j \cap E \right) \leq \min_j m(E \cap E_j) \leq \min_j m(E^* \cap E_j^*) = \int_{E^*} \prod K_{E_j^*}(x) dx.
\]

Let \(s(x) > 0 \) be a simple function. Then (see Section 10.13 of [2]) we can represent \(s(x) \) in the form

\[
s(x) = a_1 K_{E_1}(x) + a_2 K_{E_2}(x) + \cdots + a_m K_{E_m}(x)
\]

with \(E_1 + 1 \subset E_1 \), so that one has

\[
s^*(x) = a_1 K_{E_1^*}(x) + a_2 K_{E_2^*}(x) + \cdots + a_m K_{E_m^*}(x),
\]
where $a_j > 0$ and $j = 1, 2, \ldots, m$. For the simple functions $s_j(x)$, the inequality

$$
\int_E \prod s_j(x) dx \leq \int_E \prod s_j^*(x) dx
$$

follows from a linear combination of (2.1).

Finally, we establish the lemma in the general case by approximating g in terms of simple functions.

Corollary 1. Let $p(z) = \prod_{j=1}^n (z - z_j)$ and $p^*(z) = \prod_{j=1}^n (z + x_j)$, where $x_j = |z_j|$. Then

$$
\int_{-\pi}^{\pi} |p(e^{it})|^c w(t) dt \leq \int_{-\pi}^{\pi} |p^*(e^{it})|^c w(t) dt
$$

for all $c \geq 0$.

Lemma 2.2. Let $f \in L^1[0, \pi]$.

(a) Suppose f is non-negative and monotonically decreasing on $[0, \pi]$. Then

$$
\int_{0}^{\pi} f(t) \cos t \, dt > 0.
$$

(b) Let $c \geq 2$ and let f be as in (a). Suppose, for $0 \leq x < \infty$,

$$
F(x) = (1 + x^2)^{-\frac{2}{3}} \int_{0}^{\pi} |x + e^{it}|^c f(t) \, dt.
$$

Then $F(x)$ achieves its absolute maximum at $x = 1$.

Proof. (a) We note that, with the replacement of t by $t + \frac{\pi}{2}$, the integral becomes

$$
- \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f \left(t + \frac{\pi}{2} \right) \sin t \, dt = \int_{0}^{\frac{\pi}{2}} \left(f \left(\frac{\pi}{2} - t \right) - f \left(\frac{\pi}{2} + t \right) \right) \sin t \, dt,
$$

which, from the monotonicity assumption on f, is clearly non-negative.

(b) A simple calculation shows that

$$
F'(x) = \frac{c(1 - x^2)}{(1 + x^2)^{\frac{5}{2}}} \int_{0}^{\pi} g(t) \cos t \, dt,
$$

where $g(t) = \left(1 + \frac{2x}{1 + x^2} \cos t \right)^{\frac{5}{2} - 1} f(t)$.

We observe that, for $c \geq 2$, the function $g(t)$ is monotonically decreasing on $[0, \pi]$ for all $0 \leq x < \infty$. Hence, from part (a), we conclude that the integral in (2.2) is positive. That the absolute maximum of F occurs at $x = 1$ now follows from the fact that $F'(x) = 0$ only if $x = 1$, $F'(x) > 0$ for $0 \leq x < 1$, and $F'(x) < 0$ for $x > 1$.

We now come to the proof of Theorem 1.

Proof. For a given $p(z)$, we consider the quantity

$$
v(p) = \int_{-\pi}^{\pi} \frac{|p(e^{it})|^c w(t) \, dt}{\prod_{j=1}^n (1 + |z_j|^2)^{\frac{c}{2}}},
$$

Using Corollary 1 and then applying Lemma 2.2(b) inductively on each $|z_j|$, we deduce that

$$
v(p) \leq v(p^*) \leq v(P^*),
$$
56 LI-CHIEN SHEN

where

\[v(P^*) = 2^{-\frac{n}{2}} \int_{-\pi}^{\pi} |(e^{it} + 1)^n|^c w(t) \, dt. \]

This establishes Theorem 1.

\[\square \]

3. AN ALTERNATIVE PROOF OF (1.1)

The proof is essentially based on the following:

Lemma 3.1. Let \(A \) be a subset of \(N = \{1, 2, \ldots, n\} \) and \(\tilde{A} \) be the complement \(N \setminus A \). Define

\[d(A) = \prod_{j \in A} |z_j| \quad \text{and} \quad d(\tilde{A}) = \prod_{j \in \tilde{A}} |z_j|. \]

Then

\[d^2(A) + d^2(\tilde{A}) \leq \|p\|_2^2. \]

Proof. Let \(B(z, A) = \prod_{j \in A} \frac{z - z_j}{1 - z_j} \) (we note that \(B(z, A) \) has a removable singularity at \(z_j \) in case \(|z_j| = 1 \)). Then,

\[|B(z, A)| = 1 \text{ if } |z| = 1, \]

and we can write

\[p(z) = B(z, A)P_A(z), \]

where

\[P_A(z) = \prod_{j \in A} (1 - z z_j) \prod_{j \in A} (z - z_j) = d_0 z^n + \cdots + d_n \]

with \(d_0 = \prod_{j \in A} (-z_j) \) and \(d_n = \prod_{j \in \tilde{A}} (-z_j) \). From (3.1), (3.2), and Parseval’s identity,

\[\|p\|_2^2 = \|P_A\|_2^2 = \sum_{j=0}^{n} |d_j|^2 \geq d^2(A) + d^2(\tilde{A}). \]

\[\square \]

We now prove (1.1).

Proof of (1.1). We first make a simple and crucial observation about the product \(\prod_{j=1}^{n} (1 + |z_j|^2) \):

(a) Its summand consists of \(2^n \) terms (some of them may be repeated if the \(z_j \) are not distinct) and

(b) it can be rewritten as

\[\prod_{j=1}^{n} (1 + |z_j|^2) = \frac{1}{2} \sum_{i=1}^{2^n} d^2(A_i) + d^2(\tilde{A}_i), \]

where \(A_i \) runs through all the subsets of \(N \).

Applying (3.3) to (3.5), the desired conclusion follows.

\[\square \]
We observe that if equality holds in (1.1), then the equality holds for (3.4) for every subset A of N. In particular, it implies that P_A consists of two terms, from which one easily deduces that
\[p(z) = z^n + a. \]

A direct computation shows that $|a| = 1$.

From the inequality
\[\left(\frac{a^t + b^t}{2} \right)^{\frac{1}{t}} \leq \left(\frac{a^s + b^s}{2} \right)^{\frac{1}{s}} \text{ if } s \geq t \text{ and } a, b \geq 0, \]
we deduce the following:

Corollary 2. Let $0 < c \leq 2$. Then
\[\prod_{j=1}^{n} (1 + |z_j|^c) \leq 2^{n - \frac{n}{2}} \| p \|_2^c. \]

References

Department of Mathematics, University of Florida, Gainesville, Florida 32611
E-mail address: shen@math.ufl.edu