Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Explicit evaluations of a Ramanujan-Selberg continued fraction


Author: Liang-Cheng Zhang
Journal: Proc. Amer. Math. Soc. 130 (2002), 9-14
MSC (1991): Primary 11A55, 11Y65, 30B70
DOI: https://doi.org/10.1090/S0002-9939-01-06183-4
Published electronically: May 22, 2001
MathSciNet review: 1855613
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

This paper gives explicit evaluations for a Ramanujan-Selberg continued fraction in terms of class invariants and singular moduli.


References [Enhancements On Off] (What's this?)

  • 1. G. E. Andrews, B. C. Berndt, L. Jacobsen and R. L. Lamphere, The continued fractions found in the unorganized portions of Ramanujan's notebooks, Mem. Amer. Math. Soc. 99 (1992). MR 93f:11008
  • 2. B. C. Berndt, Ramanujan Notebooks Part III, Springer-Verlag, New York, 1991. MR 92j:01069
  • 3. B. C. Berndt, Ramanujan Notebooks Part V, Springer-Verlag, New York, 1998. MR 99f:11024
  • 4. B. C. Berndt, H. H. Chan and L. C. Zhang, Explicit evaluations of the Rogers-Ramanujan continued fraction, J. Reine Angew. Math. 480 (1996), 141-159. MR 98c:11007
  • 5. B. C. Berndt, H. H. Chan, and L.-C. Zhang, Ramanujan's singular moduli, The Ramanujan Journal 1 (1997), 53-74. MR 2001b:11033
  • 6. B. C. Berndt, H. H. Chan, and L.-C. Zhang, Ramanujan's class invariants, Kronecker's limit formula and modular equations, Trans. Amer. Math. Soc. 349 (1997), 2125-2173. MR 97i:11039
  • 7. B. J. Birch, Weber's class invariants, Mathematika 16 (1969), 283-294. MR 41:6816
  • 8. J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987. MR 89a:11134
  • 9. D. A. Cox, Primes of the Form $x^{2}+ny^{2}$, Wiley, New York, 1989. MR 90m:11016
  • 10. E. Heine, Untersuchungen über die Reihe $1+{\frac{{(1-q^{\alpha })(1-q^{\beta })}}{{(1-q)(1-q^{\gamma })}}}x+ {\frac{{(1... ...q^{\beta +1})}}{{(1-q)(1-q^{2})(1-q^{\gamma })(1-q^{\gamma +1})}}}x^{2}+\dotsc $, J. Reine Angew. Math. 34 (1847), 285-328.
  • 11. S. Lang, Elliptic Functions, 2nd ed., Springer-Verlag, New York, 1987. MR 88c:11028
  • 12. K. G. Ramanathan, Ramanujan's continued fractions, Indian J. Pure Appl. Math. 16 (1985), 695-724. MR 87e:11015
  • 13. K. G. Ramanathan, Some applications of Kronecker's limit formula, J. Indian Math. Soc. 52 (1987), 71-89. MR 90j:11112
  • 14. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957. MR 20:6340
  • 15. S. Ramanujan, Modular equations and approximations to $\pi $, Quart. J. Math. 3 (1914), 81-98.
  • 16. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. MR 89j:01078
  • 17. S. Ramanujan, Collected Papers, Chelsea, New York, 1962.
  • 18. A. Selberg, Über einige arithmetische Identitäten, Avh. Norske Vid.-Akad. Oslo I, Mat.-Natur. Kl., (1936), 2-23.
  • 19. G. N. Watson, Theorems stated by Ramanujan (VII): theorems on continued fractions, J. London Math. Soc. 4 (1929), 39-48.
  • 20. H. Weber, Lehrbuch der Algebra, dritter Band, Chelsea, New York, 1961.
  • 21. L.-C. Zhang, q-difference equations and Ramanujan-Selberg continued fractions, Acta Arith. 57 (1991), 307-355. MR 92j:11008
  • 22. L.-C. Zhang, Ramanujan's class invariants, Kronecker's limit formula and modular equations (II), Analytic Number Theory, Proceedings of a Conference in Honor of H. Halberstam, vol. 2, Birkhäuser, Boston, MA, 1996, pp. 817-838. MR 97i:11040
  • 23. L.-C. Zhang, Ramanujan's class invariants, Kronecker's limit formula and modular equations (III), Acta Arith. LXXXII.4 (1997), 379-392. MR 98k:11045

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11A55, 11Y65, 30B70

Retrieve articles in all journals with MSC (1991): 11A55, 11Y65, 30B70


Additional Information

Liang-Cheng Zhang
Affiliation: Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804
Email: liz917f@smsu.edu

DOI: https://doi.org/10.1090/S0002-9939-01-06183-4
Keywords: Continued fraction, class invariant, singular modulus
Received by editor(s): May 16, 2000
Published electronically: May 22, 2001
Additional Notes: Supported in part by an SMSU Faculty Summer Fellowship, 1999
Dedicated: To the memory of my father, Professor Guang-Da Zhang
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society