Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniform subelliptic estimates on scaled convex domains of finite type


Author: Jeffery D. McNeal
Journal: Proc. Amer. Math. Soc. 130 (2002), 39-47
MSC (1991): Primary 32W05
DOI: https://doi.org/10.1090/S0002-9939-01-06373-0
Published electronically: August 7, 2001
MathSciNet review: 1855617
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We show that a uniform subelliptic estimate for the $\bar\partial$-Neumann problem holds on a certain family of convex domains of finite type.


References [Enhancements On Off] (What's this?)

  • [B-C-D] J. Bruna, P. Charpentier & Y. Dupain, Zero varieties for the Nevanlinna class in convex domains of finite type in ${\mathbb{C} }^{n}$, Ann. of Math 147 (1998), 391-415. MR 99e:32023
  • [B-N-W] J. Bruna, A. Nagel & S. Wainger, Convex hypersurfaces and Fourier transforms, Ann. of Math. 127 (1988), 333-365. MR 89d:42023
  • [Cat] D. Catlin, Subelliptic estimates for the $\bar \partial $-Neumann problem on pseudoconvex domains, Ann. of Math. 126 (1986), 131-191. MR 88i:32025
  • [Cum1] A. Cumenge, Sharp estimates for $\bar \partial $ on convex domains of finite type, Ark. Mat. 39 (2001), 1-25.
  • [Cum2] -, Zero sets of functions in the Nevanlinna class in convex domains of finite type (preprint).
  • [DiFo] K. Diederich & J.E. Fornæss, Support functions for convex domains of finite type, Math. Zeit. 230 (1999), 145-164. MR 2000b:32024
  • [FoSi] J.E. Fornæss & N. Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-655. MR 90m:32034
  • [KrLi] S.G. Krantz & S.-Y. Li, Duality theorems for Hardy and Bergman spaces on convex domains of finite type, Ann. Inst. Fourier 45 (1995), 1305-1327. MR 96m:32002
  • [Mc1] J. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1994), 108-139. MR 95k:32023
  • [Mc2] -, Convex domains of finite type, J. Funct. Anal. 108 (1992), 361-373. MR 93h:32020
  • [McSt] J. McNeal & E.M. Stein, The Szegö projection on convex domains, Math. Zeit. 224 (1997), 519-553. MR 98f:32023

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 32W05

Retrieve articles in all journals with MSC (1991): 32W05


Additional Information

Jeffery D. McNeal
Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio, 43210
Email: mcneal@math.ohio-state.edu

DOI: https://doi.org/10.1090/S0002-9939-01-06373-0
Received by editor(s): February 3, 2000
Published electronically: August 7, 2001
Additional Notes: This research was supported by an Alfred P. Sloan fellowship and by a grant from the National Science Foundation
Communicated by: Steven R. Bell
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society