Real equivariant bordism and stable transversality obstructions for

Author:
Dev Sinha

Journal:
Proc. Amer. Math. Soc. **130** (2002), 271-281

MSC (2000):
Primary 57R85

DOI:
https://doi.org/10.1090/S0002-9939-01-06381-X

Published electronically:
July 25, 2001

MathSciNet review:
1855646

Full-text PDF

Abstract | References | Similar Articles | Additional Information

In this paper we compute homotopical equivariant bordism for the group , namely , geometric equivariant bordism , and their quotient as modules over geometric bordism. This quotient is a module of stable transversality obstructions. We construct these rings from knowledge of their localizations.

**1.**J. C. Alexander.

The Bordism Ring of Manifolds with Involution.*Proceedings of the A.M.S.***31**(1972), 536-542. MR**44:7563****2.**T. Bröcker and E. Hook. Stable Equivariant Bordism.*Mathematische Zeitschrift***129**(1972), 269-277. MR**47:9652****3.**G. Carlsson.

A Survey of Equivariant Stable Homotopy Theory.*Topology***31**(1992), 1-27. MR**93d:55009****4.**P. E. Conner and E. E. Floyd.*Differentiable Periodic Maps*.

Springer, Berlin-Heidelberg-New York, 1964. MR**31:750****5.**S. R. Costenoble.

The structure of some equivariant Thom spectra.*Transactions of the A.M.S.***315**(1989), 231-254. MR**89m:57038****6.**S. R. Costenoble and S. Waner.

-transversality revisited.*Proceedings of the A.M.S.***116**(1992), 535-546. MR**92m:57044****7.**T. tom Dieck.

Bordism of -Manifolds and Integrality Theorems.*Topology***9**(1970), 345-358. MR**42:1148****8.**J.P. May, et al.*Equivariant Homotopy and Cohomology Theory*.

Volume 91 of the CBMS Regional Conference Series in Mathematics.

AMS Publications, Providence, 1996. MR**97k:55016****9.**J. Milnor and J. Stasheff.*Characteristic Classes*. Volume 76 of Annals of Mathematics Studies. Princeton University Press, Princeton, 1974. MR**55:13428****10.**D. P. Sinha.

Computations in Complex Equivariant Bordism Theory.

Preprint, 1999.**11.**R. Thom. Sur quelques proprétés globales des varietés differentiables.*Commentarii Mathematici Helvetici***28**(1954), 17-86. MR**15:890a**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
57R85

Retrieve articles in all journals with MSC (2000): 57R85

Additional Information

**Dev Sinha**

Affiliation:
Department of Mathematics, Brown University, Providence, Rhode Island 02906

Email:
dps@math.brown.edu

DOI:
https://doi.org/10.1090/S0002-9939-01-06381-X

Received by editor(s):
May 19, 2000

Published electronically:
July 25, 2001

Communicated by:
Ralph Cohen

Article copyright:
© Copyright 2001
American Mathematical Society