Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A minimum energy problem and Dirichlet spaces


Author: Anatolii Grinshpan
Journal: Proc. Amer. Math. Soc. 130 (2002), 453-460
MSC (2000): Primary 31A99, 46E20, 78A30, 31A35
DOI: https://doi.org/10.1090/S0002-9939-01-06029-4
Published electronically: May 25, 2001
MathSciNet review: 1862125
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We analyze a minimum energy problem for a discrete electrostatic model in the complex plane and discuss some applications. A natural characteristic distinguishing the state of minimum energy from other equilibrium states is established. It enables us to gain insight into the structure of positive trigonometric polynomials and Dirichlet spaces associated with finitely atomic measures. We also derive a related family of linear second order differential equations with polynomial solutions.


References [Enhancements On Off] (What's this?)

  • 1. F. A. Grünbaum, Variations on a theme of Heine and Stieltjes: an electrostatic interpretation of the zeros of certain polynomials, J. Comput. Appl. Math. 99 (1998), 189-194. MR 99j:33012
  • 2. E. Heine, Handbuch der Kugelfunctionen, Bd I, J. Springer, Berlin, 1878.MR 34:4564
  • 3. M. Marden, Geometry of Polynomials, Amer. Math. Soc., Providence, RI, 1989.
  • 4. S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc., 328 (1991), 325-349. MR 92e:47052
  • 5. D. Sarason, Harmonically weighted Dirichlet spaces associated with finitely atomic measures, Integral Equations and Operator Theory, 31 (1998), 186-213; Errata, 36 (2000), no. 4, 499-504. MR 99i:46015; CMP 2000:13
  • 6. D. Sarason, D. Suarez, Inverse problem for the zeros of certain Koebe-related functions, Journal d'Analyse Mathematique, 71 (1997), 149-158. MR 98g:30009
  • 7. T. J. Stieltjes, Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé, Acta Math. 8 (1885), 321-326; Oeuvres Complètes 1, 434-439.
  • 8. G. Szegö, Orthogonal polynomials, Fourth Edition, Amer. Math. Soc., Providence, RI, 1975. MR 51:8724

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31A99, 46E20, 78A30, 31A35

Retrieve articles in all journals with MSC (2000): 31A99, 46E20, 78A30, 31A35


Additional Information

Anatolii Grinshpan
Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
Email: tolya@math.berkeley.edu

DOI: https://doi.org/10.1090/S0002-9939-01-06029-4
Keywords: Electrostatic equilibrium, Dirichlet spaces, Lam\'{e} differential equation
Received by editor(s): January 18, 2000
Received by editor(s) in revised form: June 22, 2000
Published electronically: May 25, 2001
Communicated by: Albert Baernstein II
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society